
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4918–4929
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

4918

Coming to Terms: Automatic Formation of Neologisms in Hebrew

Moran Mizrahi ∗ , Stav Yardeni Seelig ∗ , Dafna Shahaf
The Hebrew University of Jerusalem

{moranmiz,stav.yardeni,dshahaf}@cs.huji.ac.il

Abstract

Spoken languages are ever-changing, with new
words entering them all the time. However,
coming up with new words (neologisms) to-
day relies exclusively on human creativity. In
this paper we propose a system to automati-
cally suggest neologisms. We focus on the He-
brew language as a test case due to the unusual
regularity of its noun formation. User studies
comparing our algorithm to experts and non-
experts demonstrate that our algorithm is capa-
ble of generating high-quality outputs, as well
as enhance human creativity. More broadly,
we seek to inspire more computational work
around the topic of linguistic creativity, which
we believe offers numerous unexplored oppor-
tunities.

1 Introduction

Human languages are always changing, evolving,
and adapting to the needs of their speakers. New
words regularly enter our vocabulary, while others
disappear. For example, the word “selfie” (self-
portrait digital photo, typically taken with a smart-
phone) has recently become part of everyday En-
glish, even spawning variations such as helfie (a
selfie of one’s hair), welfie (a selfie taken during
a workout), and drelfie (a selfie taken while being
drunk) (Christiansen and Chater, 2016).

Newly coined words or expressions are termed
neologisms. There are many neologism formation
mechanisms; common ones include loanwords bor-
rowed from another language (kindergarten), mor-
phological derivation (socialize, simplify), com-
pounding (football, breakwater), blending (spoon +
fork = spork), and acronyms (laser).

Importantly, the coining of novel words relies
on human creativity, with the new terms often con-
veying a lot of information in an inventive way. In

∗ Both authors contributed equally to this paper.

this work, we set out to explore the possibility of
automating some of this inherently-human, cre-
ative linguistic process. In other words, we ask
whether computers can generate high-quality, novel
words on their own, or alternatively help inspire
people to find better words.

We focus on automatic generation of neologisms
in the Hebrew language. Hebrew has several prop-
erties which make it particularly interesting for our
goal: first, modern Hebrew was revived after a long
period of time (Rabin, 1963; Fellman, 1973), which
is unique. There are no other cases of a natural lan-
guage without any native speakers subsequently
acquiring millions of native speakers. For this rea-
son, foreign words are very common in Hebrew,
and many terms need to be coined.

Another reason for focusing on Hebrew is its
unusual regularity of noun formation. While port-
manteaus (word blends), word combinations and
other formation mechanisms do exist in Hebrew,
most words are created by combination of root and
pattern. To the best of our knowledge, this method
of word generation was not explored before in a
computational context. Our contributions are:
• We propose a novel task, automating the forma-
tion of neologisms in Hebrew, and propose an
algorithm mimicking the human process. Our
pipeline includes models for learning special-case
phonological rules, as well as other statistical
properties of the language. We release open-
source code and data here.
• We evaluate individual components and then run

a user study, comparing our algorithm to both ex-
perts and non-experts. While humans are better
(as expected), our algorithm is capable of gen-
erating high-quality words, winning 27-41% of
pairwise comparisons in terms of suitability, lika-
bility and creativity, as well as having candidates
in the top quartile of the overall ranking.
• In addition to comparing our system to human

https://github.com/stardeni36/Coming-to-Terms-Automatic-Formation-of-Neologisms-in-Hebrew

4919

performance, we build on ideas from human-
computer interaction to explore how the system
can improve human performance. We show our
algorithm’s output can enhance human creativity,
getting non-experts closer to experts. We believe
that this type of evaluation can be beneficial for
many NLP tasks, especially creative tasks or tasks
where human performance is still significantly
superior.
Beyond the specific task of generating Hebrew

neologisms, we hope this work would inspire fur-
ther research towards automating and supporting
creative tasks.

2 Background

Hebrew is classified as an Afroasiatic, Semitic lan-
guage. Like Arabic, Hebrew is written right to left.
Vowels are indicated by diacritic marks represent-
ing the syllabic onset, or by matres lectionis (con-
sonantal letters used as vowels). Everyday printed
Hebrew often omits the diacritic marks, resulting
in a highly ambiguous text. For example, בצל can
be diacritized as “onion”, “in a shadow” or “in the
shadow” (Shmidman et al., 2020).

Hebrew morphology. Hebrew follows noncon-
catenative morphology. It is based on roots, con-
sisting of a sequence of consonants (usually three),
from which nouns, adjectives and verbs are formed.
Thus, different words composed of the same root
often have semantically related meanings. For ex-
ample, the words תּ¢זְמֹרֶת (tizmoret),זַמּ´ר (zamar), and
זֶמ»ר (zemer) all have the root זמר (sing), and stand
respectively for an orchestra, a singer, and a song.

While in English words are usually formed by
adding prefixes and suffixes, in Hebrew the root let-
ters are combined into patterns, called mishkalim.
The patterns are commonly represented by using
the arbitrary placeholder letters קטל (k-t-l) for root
consonants. Patterns usually include diacritics,
vowel letters and sometimes prefixes and suffixes.
For example, to form the Hebrew word תּ¢זְמֹרֶת (or-
chestra), the placeholder letters קטל of the pattern
תִּקְט·לֶת are replaced with the root letters .זמר

Even though this concept is simple, there is a sig-
nificant amount of special cases requiring modifica-
tions to the form of the final word. From a sample
of the Even-Shoshan dictionary (Even-Shoshan and
Azar, 2003), we estimate that∼ 2/3 of the roots re-
quire some modification. For example, combining
the root רפא with the pattern תַּקְטֵלָה should have
resulted in תּ¯רְפֵּאָה (tarpe’a). However, since רפא

is a special root (ends with ,(א it becomes תּ�רוּפָה
(trufa).

Importantly, many patterns denote specific se-
mantic categories. For example, the pattern קַטָּל
(katal) is commonly used to describe professions,
as in זַמּ´ר (singer), טַבָּח (cook), and כַּתָּב (reporter).
However, not every category has its matching pat-
terns, and some patterns can denote multiple dif-
ferent categories. For example, the pattern קַטֶּלֶת
(katelet) can be used for professions in feminine
form, but is also a very common pattern for ill-
nesses.

Formation of Hebrew words. Many world lan-
guages have official language regulators, often re-
ferred to as language academies (e.g., the Royal
Spanish Academy, L’Académie française, the
Council for German Orthography). The regulating
body for Hebrew is the Academy of the Hebrew
Language. One of the Academy’s most important
roles is creating new words to replace loanwords
derived from other languages (Fellman, 1974). The
initiative tends to come from the public, seeking
Hebrew alternatives for foreign words common
in everyday speech. A committee of scholars of
language, linguistics, Judaic studies, and Bible dis-
cusses the word and suggests a Hebrew replace-
ment. Most new words are built using the root-
pattern system (aca, 2020), although compound
nouns and portmanteaus (blends) are also used.

We note that even with decades of experience,
it is difficult to predict whether the new terms will
be picked up by the public. Some words catch on
immediately, some take years, and some never do.

3 Methodology

In this section we present our algorithm, ELIEZER

BOT-YEHUDA (EBY), named after Eliezer Ben-
Yehuda, a lexicographer who was the driving force
behind the revival of the Hebrew language in the
modern era. We follow the three main ways of
forming words used by the Academy of the Hebrew
Language: root-pattern, compounds, and portman-
teaus. The input to the algorithm is a source word
in English, for which we wish to find a Hebrew
word. We used English as a mediating language
due to the variety of linguistic resources available
for it, but the algorithm can work with any other
language (see Section 3.3). Figure 1 shows the
process for the input word “palette”.

4920

Figure 1: The pipeline of the algorithm, including root-pattern, compounds and portmanteaus, demonstrated on
the source word “palette” (see dashed squares). The pipeline mimics the human process of generating neologisms.

3.1 Root and pattern pipeline
Root and pattern combination is the most common
mechanism for coining Hebrew terms. We now
explain how we simulate this process.

3.1.1 Finding potential roots
The first step towards coming up with a new term
is understanding what the word is about. There-
fore, we created a document for each English
word that appeared in our dictionaries, contain-
ing multiple English dictionary definitions (from
Wiktionary, Merriam-Webster dictionary, Word-
Net (Miller, 1995), ConceptNet (Speer and Havasi,
2012), Wikipedia abstracts and Easier English Stu-
dent Dictionary (Rooney and Collin, 2003)). After
lemmatizing and removing stop words, we used
tf-idf (Ramos et al., 2003) to find the 10 most im-
portant words in each document (e.g., color, mix,
board for “palette”). Despite the simplicity of this
process, it proved to be effective in practice (see
section 4.3).

Next, we attempt to identify relevant roots. To do
so, we translated the important words into Hebrew,
using English Wiktionary, Hebrew Wiktionary, and
Hebrew Wordnet (Ordan and Wintner, 2007). Im-
portantly, the output of the translators was dia-
critized words, from which we extracted roots
(identifying the root without diacritics is much
harder). Given the translations, we used Hebrew
Wiktionary and Even-Shoshan dictionary1 to iden-
tify roots. We ranked the roots based on their impor-

1Throughout our entire pipeline, we found that Hebrew
resources are few and limited, so it was crucial to incorporate
different sources to gain coverage. Our repository has pointers
to download all free sources.

tant word’s tf-idf score. Extracted roots for “palette”
include צבע (color), ערבל (mix).

3.1.2 Finding potential patterns
As mentioned in section 2, many of the patterns
in Hebrew convey semantic information. Thus,
to find patterns reflecting the word’s category, we
use Wordnet’s hypernym and hyponym relations to
extract up to k=100 sister-terms of the original for-
eign word. We translate these into Hebrew, with the
hope that some already have Hebrew translations,
which could hint at the appropriate patterns.

Hebrew Wiktionary provided roots and patterns
for the translated words, but Even-Shoshan dictio-
nary provided roots only; see the end of section
3.1.3 for details on how we inferred the patterns for
translations with root only. Finally, we chose the
top patterns based on their prevalence. As many
semantic categories have several corresponding pat-
terns, and due to sparsity of our resources, we chose
to use the top 4 patterns. In the case of “palette”,
one pattern found was מַקְטֵלָה (maktela), used for
instruments.

3.1.3 Combining roots and patterns
A naive combination of a root and a pattern will
not necessarily generate the word correctly (section
2). Thus, we trained a seq2seq model to modify
the naive root and pattern combination into a valid
Hebrew word →תּ¯רְפֵּאָה) .(תּ�רוּפָה We did not use a
rule-based model due to the large number of rules
and to allow a more general pipeline.

We curated a dataset of 3365 words, with root
and pattern, extracted from Hebrew Wiktionary.
We used the naive combination function on the

https://github.com/stardeni36/Coming-to-Terms-Automatic-Formation-of-Neologisms-in-Hebrew

4921

root and the pattern (substituting root letters in the
pattern) to create the model’s inputs, and trained it
to turn them into the correct Hebrew words. The
vocabulary size of the dataset was 46 (including
Hebrew letters and diacritics). The dataset was
divided into train, validation and test sets with 80%,
10% and 10% of the data respectively.

Model architecture and training details. The
architecture is of character-based attentional
seq2seq model (Bahdanau et al., 2014) with a sin-
gle GRU layer. We used a bidirectional encoder
with character embeddings and the decoder in-
cluded dropout. The character embeddings in the
encoder were concatenated to binary vectors, in-
dicating for each root letter whether it belongs to
different special-case root families (e.g., guttural
letters). See Appendix for the choice of model pa-
rameters. Example output for this stage for “palette”
was מַצבֵּעָה (matsbe’a), a combination of the root
“color” (צבע) with the instrument pattern מַקְטֵלָה
(maktela).

The model achieved 0.68 accuracy on the test
set. Mean Levenshtein edit distance for errors only
(after setting the distance of two diacritic characters
that sound alike to zero) was 1.63 characters. Most
of the differences to ground truth were diacritics
differences. For further evaluation see section 4.2.

We also used our model for inferring patterns
of dictionary words with root but no pattern in our
dictionary. We combined these words’ roots with
all possible patterns, and let our seq2seq model
process them. If the result was identical to the
original word, we considered the pattern likely.

3.1.4 Ranking and filtering suggestions

At this stage we had root and pattern suggestions.
Next, we wanted to select the more “Hebrew look-
ing” words. This was necessary both since the
seq2seq model did not fix all of the possible issues,
and since we wanted to make sure the new word
suggestions fit into the target language in terms
of their statistical characteristics. To choose the
best root-pattern combinations per root, we used
a character based Hebrew language model. For
each combination of root and pattern, the model
computed a probability score. We kept the two
combinations with the highest probability per root,
filtering words with probability ≤ 0.1.

To train our model, we needed a sufficient
amount of Hebrew words with diacritics. There-
fore, we crawled the Ben Yehuda project website,

containing the classics of Hebrew literature 2. He-
brew is a morphologically rich language. Thus,
each token in the text may include multiple mor-
phemes. Since we wanted the language model to
represent statistical properties of the words them-
selves, we cleaned them from prefixes according to
grammar rules3 (see elaboration in the Appendix).
The final dataset consisted of 514,300 unique words
with diacritics, and 4,955,687 characters, with av-
erage word length 9.6 characters. The number of
possible characters (including diacritics) was 46.
The data was divided into train, validation and test
sets (80%, 10% and 10% respectively). We used
an n-gram character-based language model. See
implementation details and parameter choice in
the Appendix. Further evaluation of the model is
provided in section 4.3.

To prevent confusion, the last step of the algo-
rithm is to filter out words which are identical or
sound like existing Hebrew words (Levenshtein
edit distance is zero, with substitution weight of
two diacritic characters that sound alike set to zero).

3.2 Compound and portmanteau pipeline

In addition to our main pipeline, we also supported
two less-common word formation processes: Com-
pound and portmanteau (see Figure 1). To create
proper grammatical compound nouns for a source
word, we translate the important words as before
(see section 3.1.1). We filter out all important
words without a root, to exclude loanwords. Then,
we pair up the important words left to create a com-
pound noun, ranking the pairs according to the sum
of their tf-idf scores.

To make sure the compound nouns are grammat-
ical, we focus on a specific case of compound noun
which is the highly prevalent in Hebrew, and check
whether the words in the combination are both
nouns and have a “genitive case” relation. This was
done using UDPipe POS tagger and dependency
parser (Straka and Straková, 2017). An example of
a compound for “palette” was צֶבַע לוּחַ (luakh tseva,
meaning “color board”).

To form portmanteaus, we attempted to blend
the top compounds when possible, according to
blending rules (Bat-El, 1996). For “palette”, one
example was ע£רְבּוּלוּחַ (irbuluakh, meaning “mix” +
“board”).

2https://benyehuda.org/
3https://hebrew-academy.org.il/2013/07/18/אותיות-השימוש-

ֹ/ניקוד

4922

3.3 A note on generalizability

Even though the scheme we presented focuses on
Hebrew, it can be adapted to other languages as
well. First, note that the root-pattern system is also
used in Arabic (the fifth most spoken language in
the world). By changing the data sources and re-
training the seq2seq model, our algorithm should
also work for this language. In addition, the com-
pound and portmanteaus strategies discussed in
the pipeline are common in languages without He-
brew’s root-pattern system. Thus, these formation
processes can be used in numerous languages.

More broadly, we would like to encourage the
utilization of our pipeline and its main components
(identifying related-content words, identifying po-
tential word forms, word generation via language-
dependent manipulations, ranking outputs using
language models) when generalizing the algorithm
to other languages. We believe it can serve as a
useful guide for automating the creative linguistic
process of neologism generation in any language.

4 Evaluation of individual components

Our pipeline (depicted in Figure 1) is composed
of several components. In this section we evalu-
ate the contribution of the three main components:
important words (tf-idf), combining roots and pat-
terns (seq2seq model) and ranking and filtering
(language model). For these evaluations, we used
student annotators who are native speakers of He-
brew.

4.1 Important words extraction

For this evaluation, two annotators manually
marked words they consider important in 15 En-
glish word definitions (20-300 words each). We
measured agreement using Jaccard Index, averaged
over the words, resulting in 0.4 with std = 0.197.
Inspecting the annotations, we note that the anno-
tators tended to mark a relatively small number of
important words in each definition.

We took words chosen by both annotators as
ground truth, and measured the mean recall, result-
ing in 0.7 (std = 0.25). As the main purpose of this
component is to capture the important words, we
consider the results satisfactory.

4.2 Root and pattern combination

A random sample indicated that the seq2seq model
applies changes to about 60% of its inputs. Taking a
closer look at the results, we noticed that our model

was able to learn and correctly apply some Hebrew
phonological rules, such as identifying repeating
letters and realizing when they should be merged.

It was also able to correctly add and remove di-
acritics in words (e.g., recognizing that guttural
letters cannot get a gemination mark). One of the
model’s weaknesses was converting diphthongs
to monophthongs. Some examples showing the
seq2seq model’s ability of applying different rules
are shown in the Appendix.

To evaluate the model more quantitatively, we
asked two annotators to look at 100 word pairs
and identify the one that seems to follow Hebrew
phonological rules more closely. These word pairs
were sampled randomly from words changed by
the seq2seq model (by at least one character).

The agreement between annotators using Co-
hen’s Kappa was significant (0.7). Both of the an-
notators agreed that the modified word was better
in 75% of the pairs. They agreed that the modified
word was worse only in 10% of the pairs. There-
fore, we concluded that the seq2seq model indeed
improves the root-pattern combinations.

4.3 Language model score

For the language model evaluation, we used similar
methods. First, we qualitatively examined the prob-
abilities assigned by the model to specific words.
We found that existing Hebrew words were as-
signed high probabilities, while words contradict-
ing Hebrew phonological rules, such as those still
containing diphthongs, were assigned low probabil-
ities (examples for word probabilities assigned by
the language model are shown in the Appendix).

We created 100 groups of words, sharing a root
but using 4 different patterns (as described in 3.1.2).
We computed our character-LM score for each
word, and extracted the highest and lowest scor-
ing words per group. We asked two annotators to
label the more “Hebrew looking” word from these
word pairs. Cohen’s Kappa agreement was again
significant at 0.78. Both of the annotators agreed
on the higher-rated word being better in 69% of the
pairs, and agreed that the higher-rated word was
worse in 20% of the pairs. We concluded that the
LM indeed manages to capture useful information.
As the LM was trained on Hebrew classics, we be-
lieve its performance can be improved using more
modern data containing diacritics.

4923

5 Evaluating the algorithm’s output

After evaluating the main parts of the algorithm,
we continue to evaluate its suggestions (including
root and pattern, compound and portmanteaus). We
address two main questions: (1) How do the words
our algorithm generated compare to those gener-
ated by humans? (2) Can our algorithm’s output
boost creativity in humans generating new words?

We note that we do not expect our algorithm to
beat human performance. Rather, we set out to
test whether it can generate plausible suggestions,
and whether it can inspire people to suggest better
words. We considered the following baselines:

1. Expert suggestions: Hebrew Academy.
The officially chosen Hebrew words, as well
as runner-up suggestions discussed by the
committee.

2. Non-expert suggestions: New word sugges-
tions by human participants (non experts).

3. Non-expert + EBY. New word suggestions
by non experts, after being exposed to the
algorithm’s output.

Step 1: Choosing source words. To choose
source words for the experiment, we collected re-
cent Hebrew Academy meeting protocols available
online 4. We composed a list of foreign words for
which an official Hebrew translation was chosen
as well as runner-up suggestions. We found 91
foreign words with at least two suggestions for a
Hebrew alternative and translated them to English
(our mediating language). We filtered out English
words our dictionaries had no translations for, as
well as words with a well-known official Hebrew
alternative (identified through 3 annotators; words
known by at least one person were discarded). We
sampled 20 random words from the resulting fil-
tered list.

Step 2: Non-experts. We recruited 4 non-expert
student volunteers and showed them the 20 for-
eign words. For each word, the participants had
two minutes to suggest Hebrew alternatives, then
they were exposed to the algorithm’s output and
had one more minute to come up with suggestions.
We chose those time constraints after holding trial
runs and observing that suggestions slowed down
considerably after the first minute.

Our algorithm’s output and the non-expert base-
lines yielded many suggestions. To narrow them
down and even the play field, we mimicked the

4https://hebrew-academy.org.il/

voting process used by the Hebrew Academy when
it picks its top suggestions per foreign word: we
recruited three more student volunteers, who dis-
cussed and agreed on up to top 3 suggestions from
our algorithm’s outputs and each of the non-expert
baseline suggestions independently. The chosen al-
ternatives were then used for the comparison stage.

5.1 Evaluation metrics

The assessment of the new word suggestions is not
trivial, and should take into consideration different
aspects. We chose to measure Suitability (does
the new word fit the original meaning?), Likability
(do you like it?) and Creativity (how creative is
it?). We believe these three measures provide a
comprehensive view of the fit of the words.

We created an online survey and recruited na-
tive Hebrew speakers via student mailing lists and
groups. Participation was voluntary. In the survey,
the participants saw 5 random source words out of
the chosen 20. Each source word was followed by
5-10 Hebrew suggestions from all baselines, order
randomized. Participants were asked to rate each
suggestion with respect to suitability, likability and
creativity on a Likert scale of 1-5.

As Likert scale is an ordinal scale, where arith-
metic operations should not be conducted, we de-
fined binary versions of our measures. We con-
cluded that the suitability rating must be high (≥ 4)
to pass, as the suggestion has to match the original
meaning. For likability and creativity, we settled on
the more relaxed threshold of ≥ 3. Looking at the
distribution of ratings reinforced this decision, as
this is also the exact binarization cutoff we would
have chosen to get close to 50% positives (see his-
togram in Appendix). As one could argue for other
reasonable thresholds (e.g., 4 for all measures), we
report results for them in the Appendix as well.

Finally, we define a combined binary score,
Combined, capturing whether the user considers
the word a good candidate as a whole. To be posi-
tive, a user’s rating has to pass the three thresholds:
4 for suitability, 3 for likability and creativity.

5.2 Results

The experiment included 177 participants, provid-
ing between 20-29 ratings for each suggestion. In
this section we analyze the results.

Correlation between the three measures. First,
we calculated the correlation between all measures
using Spearman coefficient. We found that both

4924

suitability and creativity are positively correlated
with likability (0.62 and 0.45 respectively), as ex-
pected. The link between suitability and creativity
was weaker (0.25), which agrees with our intuition
(as many suitable suggestions are not necessarily
creative).

Experts vs. non-experts. We now compare base-
lines 1 (experts) and 2 (non-experts). For each
source word, we identified the best suggestion from
each baseline (the word with the highest percent-
age of positive binary ratings). We found that the
experts’ best alternative surpassed the non-experts
best alternative more times in likability and suitabil-
ity (65% and 55% respectively). However, this was
not the case for creativity (45%). For the combined
measure, experts won 70% of the time.

These results are compatible with our beliefs that
experts perform better than non-experts in general.
The Hebrew Academy is an official institute, and
thus it might put more emphasis on suitability and
likability than on creativity.

Algorithm vs. humans: shared suggestions. Au-
tomatically coming up with the same words hu-
mans thought of (whether experts or non-experts)
is an encouraging sign. When considering human
baselines, we used all of their suggestions, before
filtering. Our algorithm produced 4 suggestions
identical to expert suggestions, and 2 identical to
non-expert suggestions. Non-experts generated 7
suggestions identical to experts. When focusing on
roots only, for 14 out of our 20 source words, at
least one root our algorithm selected also appeared
in the expert suggestions (and 16 appeared in the
non-expert ones). In comparison, for 17 words, at
least one of the non-expert roots appeared in the
expert suggestions.

Algorithm vs. humans: How did we fare? To
compare the algorithm to the baselines, we ranked
the suggestions for all of the source words by the
percentage of the positive (Combined) votes they
received. Table 1 shows the distribution of posi-
tions in the ranked list for the different baselines
(the bottom line shows the percentage of words
from each baseline, unrelated to the ranking). Not
surprisingly, the expert suggestions dominate the
top quarter, followed by the non-experts. However,
our algorithm is still well-represented in the top
quarters, despite having fewer candidates in the
race. Interestingly, there are more expert sugges-
tions then non-experts in the bottom quarter.

Likert scores are difficult to compare among dif-

EBY Experts Non-experts
Top 25% 10.3% 56.4% 33.3%
50-75 18.9% 43.2% 37.8%
25-50 37.1% 17.1% 45.7%
Bottom 25% 52.8% 33.3% 13.9%
Total 29.3% 38.1% 32.7%

Table 1: Distribution of words from each baseline in
each quartile, where the words are sorted by the per-
centage of positive combined (binary) votes. “Total”
indicates percentage of suggestions for each baseline.
Human baselines are, as expected, winning, but EBY
is still well-represented in the top quartiles, despite hav-
ing fewer total candidates.

Figure 2: Percentages of times row baseline beat col-
umn baseline in (a) suitability, (b) likability and (c) cre-
ativity. Comparisons are computed within participant.
Showing our algorithm (EBY), experts (Exp), non-
experts (Non-Exp), and non-experts added suggestions
after seeing the algorithm’s outputs (Non-Exp+EBY).

ferent people. Thus, we performed one more evalu-
ation. For each person and each source word they
saw, we made pairwise comparisons between each
two suggestions they ranked, and computed the to-
tal percentage of times one baseline beat another.
The results are in Figure 2. As these comparisons
are computed in the context of the same person, we
believe these results reflect user preference. As in
the previous evaluation, the human baselines are
better than our algorithm, but it does show promise:
it wins 35-40% of the time compared to experts,
and 27-41% compared to non-experts.

Enhancing human creativity. As noted in the
beginning of section 5, we let the non-experts sug-
gest words for two minutes, then showed them
EBY’s output and collected more suggestions for
one minute. We now wish to assess the algorithm’s

4925

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
�������
���

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

�
��

��
��

�
���
��
��

�

����������
��������
	�
�������
���
����
�

Figure 3: Comparison of the best non-expert sugges-
tion before and after exposure to the algorithm’s out-
puts. X axis is the best non-expert suggestion score be-
fore exposure, and y – after. Points above the diagonal
indicate improvement.

potential to be a part of people’s creative process.
We start by looking at the number of suggestions.

The mean number of suggestions before exposure
was 11.15 (std = 2.56), and the mean number of
additional suggestions after exposure was 8.35 (std
= 2.73). The number of additional suggestions
is encouraging, as (1) the time after exposure is
shorter, and (2) in preliminary trials (without the al-
gorithm’s output) we noticed that suggestions were
slowing down considerably after the first minute.

After comparing the additional suggestions to
the algorithm’s outputs, we concluded that they can
be attributed to the algorithm in many cases. For ex-
ample, when translating “guardhouse”, participants
took a rather rare root suggested by the algorithm
(זקפ) and combined it with a better pattern associ-
ated with places, resulting in the highest-scoring
word in the combined measure: זְק¢יפ¢יָה (zkifiyah).

Next, we compared the suggestions before and
after exposure. Each point in Figure 3 represents
a source word. For each suggestion, we compute
its score (percentage of positive ratings in the bi-
nary measure). The x axis represents the best sug-
gestion’s score before exposure, and the y axis –
the best non-expert suggestion, either before or af-
ter. Words above the diagonal are the ones whose
suggestions improved. Exposure to the algorithm
improved 20% of the words in suitability and lik-
ability. For creativity and the combined measure,
35% of the words improved.

The algorithm’s outputs brought the non-experts

closer to expert performance. In section 5.2 we
compared non-experts to experts. After exposure
to the algorithm’s outputs, the non-experts’ best
alternative surpassed the experts’ best alternative
45% of the times in the combined measure (com-
pared to 30%), and 70% in creativity (compared
to 55%). Three words ,זְק¢יפ¢יָה) Nֹחֲל¢יפו, (סְפ´רְפ´ר sur-
passed expert suggestions in all measures. Also re-
fer to Figure 2 to see the effect in terms of pairwise
comparisons. Interestingly, the added suggestions
beat both the first-round suggestions and the expert
suggestions in terms of creativity.

6 Error analysis

We analyzed the algorithm’s errors to understand
where it is lacking and where to focus future work
efforts. We identified two main issues.

Limited resources. In many of the cases in which
our algorithm failed to generate appropriate alter-
natives, it appears to be due to a lack of resources –
absent / inaccurate Hebrew translations, or a lack
of root / pattern information. For example, consider
the word “leggings”. One of the important words
identified was “fitting”, which was inaccurately
translated to “appropriate”. Another word, “tight”,
was accurately translated to both ה´דוּק (haduk) and
מָתוּחַ (matuakh), but our dictionaries did not have
their roots. We believe that better Hebrew resources
will significantly improve our algorithm.

Connotations. Some of EBY’s suggestion re-
ceived low likability scores. One such word, which
was highly disliked, is סָכָּל-זֵעָה (sakal ze’a) for “de-
odorant”. Literally, this is a combination of “to
thwart” and “sweat”. Even though the meaning is
well-represented here, both words have a negative
connotation. Describing deodorant by the word
“sweat” is not appealing, and the Hebrew word for
“thwart” also carries negative connotations.

Another example is “periphery”, where sugges-
tions focused on roots with meanings of “margin”
and “out”. This can be offensive for people who
live there. In fact, even the Hebrew Academy was
unable to reach a decision for this word. After
discussing suggestions based on “margin”, it was
taken off of the agenda following public outrage5.
We believe a better understanding of connotations
can help the algorithm produce more appealing
results.

5https://tinyurl.com/yd6pq3g7

4926

7 Related work

Lexical creativity. Lexical creativity has been the
subject of many studies. Yet, these studies often fo-
cus on creative writing of longer texts, such as liter-
ature or songs. For example, Settles (2010); Castro
and Attarian (2018) focused on developing tools
assisting songwriters, and Zhu et al. (2009) pre-
dicted human judgments for creativity of sentences.
As for lexical creativity work focusing on terms, it
mostly explores the cognitive/pyschological aspect
of the generation process. For example, Costello
(2002) studied the processes guiding word choice
when creating noun compounds, and Kuznetsova
et al. (2013) explored different contributing factors
to creativity in word combinations. In contrast,
we explore terms generation from an algorithmic
perspective by trying to mimic this process.

Computational neologism. Much previous com-
putational work on neologisms focused on auto-
matic recognition of neologisms and their mean-
ings (Cook and Stevenson, 2010; Cartier, 2017;
Costin-Gabriel and Rebedea, 2014; Veale and But-
nariu, 2010; Kerremans and Prokić, 2018). Work
on computational generation of neologisms mostly
focused on creating compounds and word blends
from source words (Smith et al., 2014; Deri and
Knight, 2015; Gangal et al., 2017; Kulkarni and
Wang, 2018; Özbal and Strapparava, 2012; Simon,
2018). Although our algorithm supports these word
formations, the main focus of our work is on word
generation via root and pattern combination, un-
explored in a computational context before. In
addition to providing an algorithm for the genera-
tion of the neologisms themselves, we also show
its potential in enhancing human creativity.

8 Discussion and future work

Coming up with new words (neologisms) is a hall-
mark of human creativity. In this paper we pro-
posed a system to automatically suggest neolo-
gisms, using the Hebrew language as a test case.
Given a source word, the system identifies related
words, roots and patterns and uses them to suggest
new terms. We evaluated the system through a
user study, comparing it to experts and non-experts,
and showed that while humans still perform better,
our algorithm is capable of generating high-quality
outputs, as well as enhance human creativity.

In the future, we plan to explore more word for-
mation strategies, such as associations; for exam-

ple, by using the EAT database (Hees et al., 2016).
Another exciting avenue is researching the factors
influencing the acceptance of new words by the
public. A better understanding of successful neol-
ogisms, adopted by speakers of the language, can
potentially help in their creation.

Beyond the somewhat-niche nature of Hebrew
neologisms, we seek more broadly to inspire more
work on automating and supporting creative tasks
(such as authoring), especially in human-computer
collaborative frameworks. We believe more NLP
should be applied to tackle psychological phenom-
ena, and that the intersection of the fields opens up
many intriguing research questions.

Acknowledgements

We thank the anonymous reviewers for their insight-
ful comments, the Hyadata Lab at HUJI for their
thoughtful remarks, the Hebrew Academy for their
cooperation, and all the participants in our user
studies. We would also like to especially thank
Gal Vishne and Raviv Yaniv for their support and
help during this project. This work was supported
by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and
innovation programme (grant no. 852686, SIAM)
and NSF-BSF grant no. 2017741.

References

2020. The Hebrew Academy official website.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Outi Bat-El. 1996. Selecting the best of the worst: the
grammar of hebrew blends. Phonology, 13(3):283–
328.

Emmanuel Cartier. 2017. Neoveille, a web platform for
neologism tracking. In Proceedings of the Software
Demonstrations of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 95–98.

Pablo Samuel Castro and Maria Attarian. 2018. Com-
bining learned lyrical structures and vocabulary
for improved lyric generation. arXiv preprint
arXiv:1811.04651.

Morten H Christiansen and Nick Chater. 2016. Cre-
ating language: Integrating evolution, acquisition,
and processing. MIT Press.

https://hebrew-academy.org.il/

4927

Paul Cook and Suzanne Stevenson. 2010. Automati-
cally identifying the source words of lexical blends
in english. Computational Linguistics, 36(1):129–
149.

Fintan Costello. 2002. Investigating creative language:
People’s choice of words in the production of novel
noun-noun compounds. In Proceedings of the An-
nual Meeting of the Cognitive Science Society, vol-
ume 24.

C. Costin-Gabriel and T. E. Rebedea. 2014. Archaisms
and neologisms identification in texts. In 2014 RoE-
duNet Conference 13th Edition: Networking in Ed-
ucation and Research Joint Event RENAM 8th Con-
ference, pages 1–6.

Aliya Deri and Kevin Knight. 2015. How to make a
frenemy: Multitape fsts for portmanteau generation.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 206–210.

Abraham Even-Shoshan and M Azar. 2003. Even
shoshan dictionary. Am Oved, Kineret Zmora Bitan,
Dvir and Yediot Aaronot, Tel Aviv, page 2039.

Jack Fellman. 1973. The revival of a classical tongue:
Eliezer Ben Yehuda and the modern Hebrew lan-
guage. 6. Walter de Gruyter.

Jack Fellman. 1974. The academy of the hebrew lan-
guage: Its history, structure and function. Linguis-
tics, 12(120):95–104.

Varun Gangal, Harsh Jhamtani, Graham Neubig, Ed-
uard Hovy, and Eric Nyberg. 2017. Charmanteau:
Character embedding models for portmanteau cre-
ation. arXiv preprint arXiv:1707.01176.

Jörn Hees, Rouven Bauer, Joachim Folz, Damian
Borth, and Andreas Dengel. 2016. Edinburgh asso-
ciative thesaurus as rdf and dbpedia mapping. In
The Semantic Web, pages 17–20, Cham. Springer In-
ternational Publishing.

Daphné Kerremans and Jelena Prokić. 2018. Min-
ing the web for new words: Semi-automatic neol-
ogism identification with the neocrawler. Anglia,
136(2):239–268.

Vivek Kulkarni and William Yang Wang. 2018. Simple
models for word formation in english slang. arXiv
preprint arXiv:1804.02596.

Polina Kuznetsova, Jianfu Chen, and Yejin Choi. 2013.
Understanding and quantifying creativity in lexical
composition. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1246–1258.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Noam Ordan and Shuly Wintner. 2007. Hebrew word-
net: a test case of aligning lexical databases across
languages. International Journal of Translation,
19(1):39–58.

Gözde Özbal and Carlo Strapparava. 2012. A com-
putational approach to the automation of creative
naming. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:
Long Papers-Volume 1, pages 703–711. Association
for Computational Linguistics.

Chaim Rabin. 1963. The revival of hebrew as a spo-
ken language. The Journal of Educational Sociol-
ogy, 36(8):388–392.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. In Proceedings of
the first instructional conference on machine learn-
ing, volume 242, pages 133–142. Piscataway, NJ.

Kathy Rooney and PH Collin. 2003. Easier English
Student Dictionary: Over 32,000 Terms Clearly De-
fined, Upper intermediate level. Bloomsbury Pub-
lishing.

Burr Settles. 2010. Computational creativity tools
for songwriters. In Proceedings of the NAACL
HLT 2010 Second Workshop on Computational Ap-
proaches to Linguistic Creativity, pages 49–57. As-
sociation for Computational Linguistics.

Avi Shmidman, Shaltiel Shmidman, Moshe Koppel,
and Yoav Goldberg. 2020. Nakdan: Professional he-
brew diacritizer. arXiv preprint arXiv:2005.03312.

Jonathan A Simon. 2018. Entendrepreneur: Gen-
erating humorous portmanteaus using word-
embeddings.

Michael R Smith, Ryan S Hintze, and Dan Ventura.
2014. Nehovah: A neologism creator nomen ipsum.
In ICCC, pages 173–181.

Robert Speer and Catherine Havasi. 2012. Represent-
ing general relational knowledge in conceptnet 5. In
LREC, pages 3679–3686.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Tony Veale and Cristina Butnariu. 2010. Harvesting
and understanding on-line neologisms. Cognitive
Perspectives on Word Formation, 221:399.

Xiaojin Zhu, Zhiting Xu, and Tushar Khot. 2009. How
creative is your writing? In Proceedings of the work-
shop on computational approaches to linguistic cre-
ativity, pages 87–93.

http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf

4928

A Appendices

In these sections we provide more implementation
details for the sake of reproducibility, some quali-
tative evaluations of the models and a short discus-
sion about the choice of our metrics. We release the
source, data and train-validation-test splits here.

A.1 Implementation details: Seq2seq

For the seq2seq model described in section 3.1.3,
we used AdamOptimizer, with learning rate 5e-4,
hidden size 100, batch size 2, teacher forcing ratio
0.65, dropout probability 0.1 and 10 epochs. These
hyperparameters were chosen based on accuracy
after performing a grid search with the following
hyperparameters bounds:
• Learning rate: 1e-4 to 5e-3.
• Hidden size: 10 to 150.
• Batch size: 2 to 16.
• Teacher forcing ratio: 0.5 to 0.8.

10 epochs were chosen based on early stopping.
We also tried other similar models with the same

hyperparameter bounds:
• The same architecture, with a unidirectional

GRU layer.
• The same architecture without attention.
• No use of character embeddings (one hot vec-

tors instead).
• No use of special case root families informa-

tion.
The chosen model outperformed all the other op-
tions we tried. We trained the seq2seq model on
our own laptops, without the use of a GPU.

A.2 Implementation details: Language model

The language model we used in section 3.1.4 is
an n-gram character based model, with n=4, and
add-k smoothing, where k = 1

|V |4 and V is the
size of the vocabulary. We normalized the word
probabilities according to their length. We chose
this model since it had the lowest perplexity (4.72
on the validation set and 4.67 on the test set) com-
pared to other n-gram models with n between 2 and
6 (see Table 2). It also performed better than a one
layered GRU language model. In many cases, a
language model needs to account for long depen-
dencies between elements (e.g., words). However,
this is not the case here, and it is reasonable to as-
sume that the influence of characters within a word
is in a small window.

The data for the training of the model was
obtained from the Ben Yehuda project website,

n Perplexity
2 11.41
3 6.0
4 4.72
5 6.37
6 14.64

Table 2: Character based n-gram language model per-
plexity on the validation set for different n values.

containing the classics of Hebrew literature. We
wanted the language model to represent statisti-
cal properties of the words themselves. Thus, we
cleaned them from prefixes וכל”ב) (מש”ה using the
relevant diacritization rules. The cleaning algo-
rithm used counts of occurrences of words starting
with one of the וכל”ב מש”ה letters, before and after
removal of their first letter. If the number of occur-
rences of the word after cleaning was higher than its
number of occurrences before that, the letter was
removed and the relevant diacritization changes
were applied. The prevalence of the definite article
ה required a special treatment. To words starting
with ,ה we applied the changes when the number
of occurrences after cleaning was higher than fifth
of the occurrences before cleaning. This cleaning
procedure was repeated 4 times to account for mul-
tiple prefixes (such as in ,ולכשיצאנו which should
result in .(יצאנו

A.3 Qualitative evaluation of the models

When evaluating the seq2seq and language model
in sections 4.2 and 4.3, we used both qualitative
and quantitative evaluations. We add here some
tables demonstrating their qualitative performance.

In Table 3, we show some examples of phono-
logical rules our seq2seq model was able to learn.
In Table 4, we show the top and bottom 3 gen-
erated Hebrew alternatives for the English word
“allergy” according to the probabilities assigned by
the language model. This table shows how existing
or well formed Hebrew words are assigned with
a high probability, while words violating Hebrew
phonological rules are assigned with low probabili-
ties.

A.4 Evaluation measures

As Likert scale is an ordinal scale, where arithmetic
operations should not be conducted, in section 5.1
we defined a binary score using a cutoff for each of
our measures: suitability, likability and creativity.

We chose the cutoffs based on our intuition that
suitability must be high (threshold ≥ 4), but lika-

https://github.com/stardeni36/Coming-to-Terms-Automatic-Formation-of-Neologisms-in-Hebrew

4929

Rules Input Output
a מ¤שְפָחָה מ¤שְפָּחָה
b חִבְבָה חִבָּה
c ז³וֵב זָב
d מ®נְפָה מַפָּה
e הִתְלַהְּבוּת הִתְלַהֲבוּת

Table 3: Examples showing the seq2seq model’s abil-
ity of applying different rules. (a) lenition (b) unit-
ing repeating latters under a gemination mark (c) diph-
thong to monophthong (d) assimilation followed by
gemination (e) diacritization changes due to guttural
letters.

Rank Word Probability
1 רªג¬שׁ 0.44
2 חֲמ¢ירָה 0.40
3 צְפ¢יָּה 0.39
30 מ¬שֶׁ 0.04
31 Nֹמ¤שְׁו 0.03
32 Nֹגּ¢ובו 0.01

Table 4: Examples for word probabilities assigned by
the language model. We present the top and bottom
3 new Hebrew alternatives for the word “allergy”, af-
ter sorting all of the outputs according to the language
model probabilities. It is evident that the top words
are well formed, sometimes already existing, Hebrew
words, while the bottom words do not fit to the statisti-
cal characteristics of Hebrew words.

Figure 4: Histogram of ratings for each measure in the
user study.

bility and creativity can be more relaxed (threshold
of ≥ 3). Looking at the distribution of ratings
reinforced this decision, as this is also the exact
binarization cutoff we would have chosen to get
close to 50% positives. See histogram of ratings
in Figure 4: for suitability, roughly 50% of the

EBY Experts Non-experts
Top 25% 7.89% 57.89% 34.21%
50-75 30.56% 33.33% 36.11%
25-50 32.43% 32.43% 35.14%
Bottom 25% 47.22% 27.78% 25%
Total 29.3% 38.1% 32.7%

Table 5: Distribution of words from each baseline in
each quarter, where the words are sorted by the percent-
age of positive combined (binary) votes as in Table 1 of
the paper, with binarization cutoff 4 for all three mea-
sures.

EBY Experts Non-experts
Top 25% 5.4% 59.46% 35.14%
50-75 25.64% 35.9% 38.46%
25-50 40% 25.71% 34.29%
Bottom 25% 47.22% 30.56% 22.22%
Total 29.3% 38.1% 32.7%

Table 6: Distribution of words from each baseline in
each quarter, where the words are sorted by the percent-
age of positive combined (binary) votes as in Table 1 of
the paper, with binarization cutoff 3 for all three mea-
sures.

participants exceed the ≥ 4 threshold. However,
for likability and creativity to be close to 50% we
needed to treat 3 as a positive label as well.

As one could argue for other reasonable thresh-
olds, we report these results here as well. Tables
5 and 6 are computed the same way as Table 1 in
the paper. For Table 5 we use ≥ 4 threshold for all
measures; in Table 6 we use ≥ 3 threshold for all
measures. While the top quartile results are lower,
the qualitative effect is the same, and the algorithm
still has many suggestions in top quarters.

