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in News Articles
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Finding information is becoming a major part of our daily life. Entire sectors, from Web users to scientists
and intelligence analysts, are increasingly struggling to keep up with the larger and larger amounts of
content published every day. With this much data, it is often easy to miss the big picture.

In this article, we investigate methods for automatically connecting the dots—providing a structured,
easy way to navigate within a new topic and discover hidden connections. We focus on the news domain:
given two news articles, our system automatically finds a coherent chain linking them together. For example,
it can recover the chain of events starting with the decline of home prices (January 2007), and ending with
the health care debate (2009).

We formalize the characteristics of a good chain and provide a fast search-driven algorithm to connect two
fixed endpoints. We incorporate user feedback into our framework, allowing the stories to be refined and
personalized. We also provide a method to handle partially-specified endpoints, for users who do not know
both ends of a story. Finally, we evaluate our algorithm over real news data. Our user studies demonstrate
that the objective we propose captures the users’ intuitive notion of coherence, and that our algorithm
effectively helps users understand the news.
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1. INTRODUCTION

“Can’t Grasp Credit Crisis? Join the Club,” stated David Leonhardt’s article in the
New York Times. Credit crisis had been going on for seven months by that time, and
had been extensively covered by every major media outlet throughout the world. Yet
many people felt as if they did not understand what it was about.

Paradoxically, the extensive media coverage might have been a part of the problem.
This is another instance of the information overload problem, long recognized in the
computing industry. Users are constantly struggling to keep up with the larger and
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larger amounts of content that is being published every day; with this much data, it is
often easy to miss the big picture.

For this reason, there is an increasing need for techniques to present data in a mean-
ingful and effective manner. In this article, we investigate methods for automatically
connecting the dots—providing a structured, easy way to uncover hidden connections
between two pieces of information.

We focus on the news domain: given two news articles, our system automatically
finds a coherent story (chain of articles) linking them together. For example, imagine
a user who is interested in the financial crisis and its effect on health care reform. The
user vaguely recalls that the financial crisis is related to the decline of home prices in
2007. The user would then choose representative articles for those two topics and feed
them to our system. An output chain of news articles may look like this (parenthesized
text not part of output).

�

�

�

�

1.3.07 Home Prices Fall Just a Bit

3.4.07 Keeping Borrowers Afloat

(Increasing delinquent mortgages)

3.5.07 A Mortgage Crisis Begins to Spiral, ...

8.10.07 ... Investors Grow Wary of Bank’s Reliance on Debt.

(Banks’ equity diminishes)

9.26.08 Markets Can’t Wait for Congress to Act

10.4.08 Bailout Plan Wins Approval

1.20.09 Obama’s Bailout Plan Moving Forward

( ... and its effect on health benefits)

9.1.09 Do Bank Bailouts Hurt Obama on Health?

(Bailout handling can undermine health-care reform)

9.22.09 Yes to Health-Care Reform, but Is This the Right Plan?

The chain mentions some of the key events connecting the mortgage crisis to health
care, including the bailout plan. Most importantly, the chain should be coherent: after
reading it, the user should gain a better understanding of the progression of the story.

We believe that the ability to connect dots and form a logical, coherent chain lies at
the basis of understanding a topic. We view chains as good building blocks for more
complex structures, such as graphs. Existing graph structures (e.g., Nallapati et al.
[2004]) often use single edges as their main building blocks, and therefore they are
limited to only encoding local interactions. Using chains, we can construct graphs
where entire paths are coherent, thus achieving a more global behavior.

There are multiple ways that connecting dots can be utilized. It can be used as an
information discovery tool, indicating links between two topics of interest; as an edu-
cational tool, pointing out what is appropriate to learn next; or as a context-providing
tool, explaining what led to a certain event. In the following, we outline two use-case
scenarios.

Use-Case 1 Browse. Many news sites present a “Related Articles” feature, indicating
articles that the user may find interesting. We propose to augment this feature by
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Fig. 1. Use-Case 1 (Illustration): Adding a Connect-the-Dots sidebar to a news site allows the user to create
chains between the current article (top right) and other articles. Candidate articles are chosen from a drop-
down menu (bottom right). After an article is chosen, the system computes the most coherent chain between
the two articles and displays it to the user (right).

a Connect-the-Dots mechanism, allowing the user to connect the current article to
related articles, and see it in the context of coherent chains.

Consider Figure 1 for an example. The user is browsing an article about the OJ
Simpson trial on the New York Times Web site. The sidebar on the right features the
Connect-the-Dots mechanism. At first, the user sees only the current article (marked).
He can then choose the other end of the chain from a drop-down menu. Once an article
is picked from the menu, the algorithm quickly computes a coherent chain connecting
both articles and displays it to the user.

In Figure 1 the user chose an article about the bloody gloves found at the crime
scene. This choice resulted in a chain focusing on evidence in the Simpson trial, in-
cluding fiber and DNA evidence. The user can then browse the articles, or choose to
construct a different chain.

We believe that this feature will allow news readers to grasp important aspects of
the news quickly and easily.

Use Case 2 Search. Information search is one of the most common tasks users are
performing on the Internet. The output of search engines today tends to consist of a
list of relevant documents; a few group similar results together into clusters. However,
building on top of chains, we can conceive richer forms of output.

For example, consider a newssite search engine whose output is a set of (possibly
intersecting) coherent chains, covering diverse and important aspects of the query.
Visually exploring the chains can reveal new and interesting connections, which are
harder to see in a textual list.

To the best of our knowledge, the problem of connecting the dots is novel. Previous
research (e.g., Choudhary et al. [2008]; Gabrilovich et al. [2004]; Nallapati et al. [2004];
Yang et al. [1999, 2000, 2006]) focused on organizing news articles into hierarchies or
graphs, but did not address the notion of output coherence.
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Our main contributions are:1

— formalizing characteristics of a good chain of articles and the notion of coherence;
— formalizing influence with no link structure;
— providing an efficient algorithm for connecting two fixed endpoints while maximiz-

ing chain coherence;
— providing an efficient interactive algorithm for the case of partially-specified end-

points, based on the notion of coverage;
— incorporating feedback and interaction mechanisms into our system, tailoring sto-

ries to user preferences; and
— evaluating our algorithm over real news data and demonstrating its utility to news-

readers via a user study.

Our methods are also directly applicable to many other domains. Email, research
papers, and military intelligence analysis are but a few of the domains in which it
would be immensely useful to discover, extract, and automatically connect the dots.

2. SCORING A CHAIN

2.1 What Makes a Chain of Articles Good?

Our goal is to find a good path between two articles, s and t. We refer to this path as
a story between s and t. A natural thing to do would be to construct a graph over the
articles and find the shortest s-t path. Since there are no edges between articles, we
will have to add them ourselves, e.g., by linking similar articles together.

However, this simple method does not necessarily yield a good chain. Suppose we
try to find a coherent chain of events between Clinton’s alleged affair and the 2000
election Florida recount. We pick two representative documents,

s: Talks Over Ex-Intern’s Testimony On Clinton Appear to Bog Down (Jan 1998)
t: Contesting the Vote: The Overview; Gore asks Public For Patience (Nov 2000)

and find a shortest path between them. The result is shown on Figure 2 (left). This
chain of stories is rather erratic, passing through the Microsoft trial, Palestinians, and
European markets before returning to Clinton and American politics. Note that each
transition, when examined out of context, is reasonable; for example, the first and the
second articles are court-related. Those correlations are marked by dashed lines in
Figure 2.

The problem seems to lie with the locality of shortest-path. Every two consecutive
articles are related, but there is no global, coherent theme to the chain as a whole.
Rather, shortest-path may exhibit stream-of-consciousness behavior, linking s and t
by a chain of free associations. A better chain is in Figure 2 (right). This chain tells
the story of Clinton’s impeachment and acquittal, the effect on Al Gore’s campaign,
and finally the elections and recount. In the following, we identify the properties that
make this chain better.

Let us take a closer look at these two chains. Figure 2 (bottom) shows word activa-
tion patterns along both chains. Bars correspond to the appearance of a word in the
articles depicted above them. For example, the word “Clinton” appeared throughout
the whole right chain, but only at the beginning and the last two articles on the left. It
is easy to spot the associative flow of the left chain in Figure 2. Words appear for very

1This article is an expanded version of [Shahaf and Guestrin 2010], including new algorithms, proofs, and
a detailed discussion of proper parameter choice. This article also poses a new variant of the problem
(partially-specified endpoints) and proposes an interactive algorithm to solve it.
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Fig. 2. Two examples of stories connecting the same endpoints. Left: chain created by shortest-
path (dashed lines indicate similarities between consecutive articles). Right: a more coherent
chain. Activation patterns for each chain are shown at the bottom; the bars indicate appearance
of words in the article above them.

short stretches, often only in two neighboring articles. Some words appear, then disap-
pear for a long period and reappear. Contrast this with the chain on the right, where
the stretches are longer (some words, like Clinton and Lewinsky, appear almost every-
where), and transitions between documents are smoother. This observation motivates
our definition of coherence in the next section.

2.2 Formalizing Chain Coherence

Let D be a set of articles, and W a set of features (typically words or phrases). Each
article is a subset of W . Given a chain (d1, ..., dn) of articles from D, we can estimate
its coherence from its word activation patterns. One natural definition of coherence is

Coherence(d1, ..., dn) =
n−1∑
i=1

∑
w

�(w ∈ di ∩ di+1).

Every time a word appears in two consecutive articles, we score a point. This objective
has several attractive properties; it encourages positioning similar documents next to
each other and rewards long stretches of words. It is also very simple to compute.
However, this objective suffers from serious drawbacks:

Weak links. They say that a chain is only as strong as its weakest link; this applies
to our chains as well. Summing over the transitions can lead to broken chains (hav-
ing weak links), since a chain with many strong links and few weak ones may still
score very high. For example, a chain in which all articles but the last one are about
the Lewinsky scandal will receive a good score, while not connecting the endpoints in
any way.
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Fig. 3. Word influence from an article about the OJ Simpson trial to two other documents – one about
football and another about DNA evidence.

A more reasonable objective would consider the minimal transition score instead of
the sum.

Coherence(d1, ..., dn) = min
i=1...n−1

∑
w

�(w ∈ di ∩ di+1).

However, other drawbacks still exist.

Missing words. Due to our noisy features, some words do not appear in an article,
although they should have. For example, if a document contains “lawyer” and “court”
but not “prosecution,” chances are “prosecution” is still a highly-relevant word.
Considering only words from the article can be misleading in such cases.

Moreover, even if our features were not noisy, an indicator function is not informative
enough for our needs.

Importance. Some words are more important than others, both on a corpus level and
on a document level. For example, in the shortest-path chain, the first two articles
shared several words, among them “judge” and “page.” Clearly, “judge” is more
significant, and should affect the objective function more.

Combining importance and missing words, it becomes clear that we need more than
a simple word-indicator. Rather, we need to take into consideration the influence of di
on di+1 through the word w. We defer the formal definition of influence to Section 2.3;
intuitively, Influence(di, dj | w) is high if (1) the two documents are highly connected,
and (2) w is important for the connectivity. Note that w does not have to appear in
either of the documents. See Figure 3 for an example: the source document d0 is

d0 : Judge Lance Ito lifted his ban on live television coverage of the O.J.
Simpson trial

We calculated word-influence from d0 to two other documents, using methods ex-
plained in Section 2.3. The blue bars (in the back) represent word influence for
document

d1 : O.J. Simpson’s defense lawyers told the judge they would not object to
the introduction of DNA evidence

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 24, Publication date: February 2012.



Connecting Two (or Less) Dots: Discovering Structure in News Articles 24:7

and the red bars (front) represent word influence for

d2 : Winning three consecutive Super Bowls would be a historic
accomplishment for San Francisco 49ers

First, note that the blue bars are generally higher. This means that d1 is more rel-
evant to the source article d0. The influential words for d1 are mostly court-related,
while d2’s are sport-related (interestingly, the word “Defense” is strong in both docu-
ments, for completely different reasons). Note that many of the influential words do
not appear in any of the three articles, thereby solving the Missing words problem.
With the new Influence notion, our objective can be redefined as

Coherence(d1, ..., dn) = min
i=1...n−1

∑
w

Influence(di, di+1 | w)

This new objective, while better, still suffers from the problem of Jitteriness.

Jitteriness. The objective does not prevent jittery activation patterns: topics that
appear and disappear throughout the chain.

One way to cope with jitteriness is to only consider the longest continuous stretch
of each word. This way, going back-and-forth between two topics provides no utility
after the first topic switch. Remember, this stretch is not determined by the actual
appearance of the word along the chain; words may have a high influence in some
transition even if they are missing from one (or both) of the articles. Rather, we define
an activation pattern arbitrarily for each word, and compute our objective based on it.
The coherence is then defined as the score under the best activation pattern.

Coherence(d1, ..., dn) = max
activations

min
i=1...n−1∑

w

Influence(di, di+1 | w)�(w active in di, di+1) (∗).

Since influence is nonnegative, the best solution is to activate all words everywhere.
In order to emulate the behavior of the activation patterns in Figure 2, we constrain
the possible activation patterns we consider: we limit the total number of active words
and the number of words that are active per transition. In order to avoid multiple
stretches, we allow each word to be activated at most once.

Instead of using binary activations (words are either active or inactive), we propose
a softer notion of continuous activations. A word’s activation is in the range [0, 1],
signifying the degree to which it is active. This leads, quite naturally, to a formalization
of the problem as a linear program.

2.2.1 Linear Program Formulation. The objective function (*) we defined in the previ-
ous section can be readily formalized as a linear program (LP). The LP is specified in
Figure 5 and illustrated in Figure 4.

We are given a chain of n chronologically-ordered documents, d1, ..., dn. First, we
define variables describing word activation levels. We define a variable word-activew,i
for each document i = {1, ..., n − 1} and word w. Variable word-activew,i measures the
activation level of w during the transition from di to di+1. In Figure 4, those variables
are represented by the height of the bars. When a word’s activation level increases
between two consecutive transactions (di−1 − di − di+1), we say it was initialized in di.
We define another variable word-initw,i indicating the initialization level of w in di. In
the 0-1 case of Figure 2, word-initw,i = 1 means that w is first activated in di. In the
continuous case of Figure 4, word-initw,i corresponds to the increase of height between
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Fig. 4. An illustration of the results of the linear program, showing initialization and activation levels along
a chain for three words. Activation level is the height of the bars. Initialization level is the difference in
activation levels between two consecutive transactions, if the activation level has increased.

Fig. 5. Scoring a chain.

two consecutive transitions. Note that in the continuous case, a word can be initialized
several times.

The LP has three main parts. In Smoothness, we require that the activation pat-
terns are smooth. First, constraint (1) requires that each word is activated at most
once. Constraint (2) links the initialization and activation variables together. It en-
sures that an active word w implies that either w was active in the previous transition,

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 24, Publication date: February 2012.
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Fig. 6. Activation patterns found by our algorithm for a chain connecting 9/11 to Daniel Pearl’s murder. (a)
Activation levels. (b) Activation levels weighted by the influence (rescaled). For illustrative purposes, we
show the result of the integer program (IP) we get replacing constraint (7) of the LP by its binary equivalent.

or it just got activated. We also set word-activew,0 = 0, (3). Intuitively, it means that
no words were active before the beginning of the chain.

In Activation Restrictions, we limit the total number of active words, (4) and the
number of words that can be active during a single transition, (5). We use parame-
ters kTotal and kTrans to control the number of active words. The interplay between
those two parameters controls the length of the activation segments. For example, if
kTotal ∼ kTrans · (K − 1), the LP might pick different words for every transition, and
segments will be short. See Section 3.2 for a detailed discussion.

Finally, we get to the Objective Function. For every edge i, we calculate its influence.
Based on Equation (*), edge influence is the weighted influence of the active words.

∑
w

word-activew,i · influence(di, di+1 | w).

Our goal is to maximize the influence of the weakest link: to do this, we define
a variable, minedge, which takes the minimum influence across all edges (6). Our
objective is to maximize this variable.

As a sanity check, we tried the LP on real chains. Figure 6 (left) shows the best
activation pattern found for a chain connecting 9/11 and Daniel Pearl’s murder (top five
words). This pattern demonstrates some of the desired properties from Section 2: the
word “Terror” is present throughout the whole chain, and there is a noticeable change
of focus from Bin Laden to Pakistan and the kidnapped journalist. Figure 6 (right)
shows activation × influence (rescaled). Notice that words with the same activation
levels can have different levels of influence, and thus different effects on the score.

2.3 Measuring Influence without Links

The LP from the previous section required evaluation of influence(di, dj | w)—the influ-
ence of di on dj with respect to word w (refer again to Figure 3 for intuition). Several
methods for measuring influence have been proposed. The vast majority of them focus
on directed weighted graphs (e.g., the Web, social networks, citations), where influence
is assumed to propagate through the edges. Methods such as authority computation
[Kleinberg 1999], random graph simulations [Kempe et al. 2003], and random walks
[Brin and Page 1998], all take advantage of the edge structure.

However, in our setting no edges are present. Adding artificial edges (formally
known as link prediction) is a complicated and challenging task. In this section, we
explore a different notion of influence; despite the fact that this notion is based on
random walks, it requires no edges.

First, we construct a bipartite directed graph, G = (V, E). The vertices V = VD ∪VW
correspond to documents and words. For every word w in document d, we add both
edges (w, d) and (d, w). Refer to Figure 7 for a simple graph. There are four (square)
documents, and four (circle) words. The leftmost article, about Clinton admitting
Lewinsky liaison, is connected to the words “Clinton” and “Judge.”

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 24, Publication date: February 2012.
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Fig. 7. A bipartite graph used to calculate influence.

Edge weights represent the strength of the connection between a document and a
word. Copernic2, the tool we used for word extraction, assigns importance to each
word; we found that these weights worked well as document-to-word edge weights.
Unfortunately, the Copernic algorithm is proprietary, so its precise details were not
given. Alternatively, one can use TF-IDF weights. Note that unlike Copernic, TF-IDF
requires us to carefully choose the corpus.

Since we later interpret weights as random walk probabilities, we normalize the
weights over all words in the document. For example, the rightmost article is mostly
(.7) about Al Gore, and somewhat about Judge (.2), and Clinton (.1). The word-to-
document weights are computed using the same numbers, but normalized over the
documents. The word “Gore” can only be reached by a single document, so the edge
weight is .7

.7 = 1. We now use this weighted graph to define influence between docu-
ments.

As mentioned before, Influence(di, dj | w) should be high if the two documents are
strongly connected, and w plays an important role in this connection. Intuitively, if
the two documents are connected, a short random walk starting from di should reach
dj frequently. We first compute the stationary distribution for random walks starting
from di. We control the expected length with a random restart probability, ε. The
stationary distribution is the fraction of the time the walker spends on each node.

�i(v) = ε · �(v = di) + (1 − ε)�(u,v)∈E�i(u)P(v | u),

where P(v | u) is the probability of reaching v from u.
Intuitively, if di and v are very related, �i(v) is high, as many walks reach v. We now

need to factor in the effect of word w on these walks. In particular, we are interested in
knowing how many of the walks went through word w before reaching v. To do this, we
turn w into a sink node: let Pw(v | u) be the same probability distribution as P(v | u),
except there is no way out of node w.

Pw(v | u) =

⎧⎪⎨
⎪⎩

0 if u = w and v �= w

1 if u = v = w

P(v | u) o/w
.

2http://www.copernic.com
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Table I. Top 10 Influential Words for Different Values of ε

0.01 0.25 0.99
glove glove glove

apparel apparel apparel
David Margolick Richard Rubin David Margolick

Judge Lance Ito Aris Isotoner murder
Ronald Goldman Michael Conners Ronald Lyle Goldman
Mark Fuhrman (detective) video recording Simpson murder

black David Margolick Los Angeles
jury system Marcia Clark (deputy dist. atty.) Nicole Brown Simpson

Kenneth Noble Richard Rubin Simpson
police Bloomingdales Johnny Cochran Jr.

Let �w
i (v) be the stationary distribution for this new graph.

�w
i (v) = ε · �(v = di) + (1 − ε)�(u,v)∈E�w

i (u)Pw(v | u).

If w was influential, the stationary distribution measured at dj would decrease a lot.
In Figure 7, without the word “Judge,” article 1 (leftmost) is no longer reachable from
article 2. Therefore, we define the influence on dj with respect to w as the difference
between these two distributions.

Influence(di, dj | w) = �i(dj) − �w
i (dj). (8)

We calculate both stationary distributions, �i(v) and �w
i (v), by the power method,

and then take their difference. Note that difference is better than quotient, since we
want high influence to imply that the two documents are strongly connected. Each
iteration of the power method is quadratic in the number of nodes in the graph.

Example word-influence results that were calculated according to Equation (8)
appear in Figure 3. Refer to Section 2.2 for a detailed explanation of the figure.

2.3.1 The Effect of ε. The random walk results depend a lot on the choice of ε. ε
controls the expected length of a walk: in expectation, we experience a random restart
every 1

ε
steps.

Prescribing the optimal random-walk length is hard. Each walk should be long
enough to explore the natural cluster of its starting point di, but not long enough to
forget where it came from. In particular, lists of influential words created by very
long walks tend to include words that are unrelated to di. On the other hand, very
short walks tend to only produce words from the immediate neighborhood of di, losing
higher-order word cooccurrences in the process.

Table I further demonstrates the effect of ε. We have computed the influence be-
tween two articles about OJ Simpson’s trial. The articles discussed the bloody gloves
recovered at the scene of the murder. Table I shows the top ten influential words for
different values of ε for the sake of demonstration, we show the value used in our
experiments (0.25), and two extreme values (0.01 and 0.99).

First, we note that the top two words (“glove” and “apparel”) are the same across
the table. This is because these words appear in both di and dj. In addition, they are
among the most important words in di (as reflected by their importance scores). Thus,
many of the random walks from di to dj have gone through these words.

When ε = 0.01 (long walks), the list contains many words that are ubiquitous
throughout the Simpson story, but not necessarily related to the glove episode (e.g.
“Judge Ito,” “Ronald Goldman,” “jury,” and “police”). As expected, prevalent aspects of
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the story are heavily represented. For example, the words “black” and “detective Mark
Fuhrman” are related to the racial tension of the Simpson case.

On the other hand, when ε = 0.99 (short walks), the list contains mostly words that
appear directly in di (but not necessarily in dj). When we examine the influence scores,
we first notice that they are all very low. This is to be expected, since the probability
of reaching dj is lower to begin with. However, even after normalizing the influences,
we still observe a very large gap between the first two words and the rest of the list.
As noted before, these words (“glove” and “apparel”) appear in both di and dj, and thus
participate in a path of length two. Longer paths are much less likely when ε is high,
and thus words which lie on those longer paths did not get to play an important role
in the walks.

Finally, ε = 0.25 seems to achieve a healthy balance: the list of words includes
mostly words that are directly related to the glove story, but do not necessarily ap-
pear in either di or dj. For example, Richard Rubin is a glove designer who testified
that leather gloves shrink when exposed to liquid, Aris Isotoner is the company that
manufactured the gloves, and Michael Conners is a photographer who took a picture
showing OJ Simpson, several years before the trial, wearing a pair of gloves resem-
bling those found at the crime scene.

3. FINDING A GOOD CHAIN

In the previous sections we discussed a method to score a fixed chain. However, we are
still left with the problem of finding a chain. One natural way is to use local search. In
local search, we start from a candidate chain and iteratively move to a neighbor chain
chosen to maximize our scoring function. Local search is easy to understand and to
implement; however, it suffers from some known drawbacks, in particular a tendency
get stuck in a local optimum. Our weakest-link objective creates a plethora of local
optima, thus aggravating the problem.

In Shahaf and Guestrin [2010], we presented a different approach. We have formu-
lated this problem as an LP, and jointly optimized over the choice of words and chains.
The main difference between this LP and the LP from Section 2.2 is that neither the
transitions nor the articles were known in advance; therefore, we had to consider all
articles and edges as candidates for the chain. We have also presented a randomized
rounding schema with proven guarantees.

The approach in Shahaf and Guestrin [2010] has produced good chains, but gen-
erating the chains was a slow process. In addition, this approach only provided an
approximate solution. Approximation algorithms are a common technique when deal-
ing with hard problems; however, in our case, the LP objective poses difficulties along
this path.

In particular, consider two coherent chains—(d1, ..., dk) and (dk, ..., d2k−1). Intu-
itively, concatenating the chains can result in a much weaker chain; despite the fact
that both chains share an article, they may focus on completely different aspects. How-
ever, the LP objective implies that

Coherence(d1, .., d2k−1) ≥ 1
2

min{Coherence(d1, ..., dk), Coherence(dk, .., d2k−1)},

since we can scale down the LP variables of both chains by a factor of two, and the
result is a valid solution for the concatenated chain. In other words, concatenating
two chains will cause us to lose a factor of two at most. A similar principle holds for
concatenating more than two chains. In fact, a greedy algorithm that considers single
edges completely out of context, will result in a 1

K approximation ratio for a chain of
length K.
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For this reason, we abandon high approximation ratios. Instead, we will now explore
practical ways to speed up the process of finding an optimal chain.

3.1 The Algorithm

Of all search strategies used in problem solving, one of the most popular methods
of exploiting heuristic information to cut down search time is the informed best-first
strategy. The general philosophy of this strategy is to use the heuristic information
to assess the merit latent in every candidate direction exposed during the search and
explore the direction of highest merit first.

Refer to Algorithm 1 for our main algorithm, findOptimalChain. The algorithm tries
to find the most coherent s-t chain of length K. The outline of the algorithm is based
on the general best-first strategy [Dechter and Pearl 1985]. We keep a priority queue
of selected chains (line 6). We initialize the queue with the chain consisting only of
vertex s (line 7). At each iteration, we expand the chain that features the highest merit
(line 9), generating all of its valid extensions (lines 17–18). If the current chain is of
length l and ends with vertex u, validExtensions(u, l) returns the set of neighbors of u
in G which can reach t in exactly K − l − 1 steps.

We would like to terminate the search as soon as the first s-t chain of length K is
selected for expansion (line 16), but without compromising optimality. In order to do
this, it is sufficient to require that the evaluation function used to sort the queue is
admissible—always provides optimistic estimates of the final costs. We will use the
following lemma.

LEMMA 3.1. Let πk = (d1, d2, ..., dk) a chain, and πk+1 = (d1, d2, ..., dk, dk+1) a chain
extending πk by a single article dk+1. Then Coherence(πk) ≥ Coherence(πk+1).

PROOF. Consider the LPs for πk, πk+1, denoted L Pk and L Pk+1. We now show that
each feasible solution to L Pk+1 maps to a feasible solution of the same value for L Pk.

The variables of L Pk are a subset of the variables of L Pk+1. We use the simplest
mapping: given a solution to L Pk+1, we assign the same value to all shared variables
of L Pk. This is a feasible solution: Constraints (2),(3),(5),(6), and the relaxed version
of (7) are all satisfied directly by L Pk+1. Constraints (1) and (4) provide upper bounds
on summations of nonnegative numbers. Since the bound holds for L Pk+1, it must
hold when we sum over a subset of the numbers. Therefore, constraints (1) and (4) are
satisfied in in L Pk as well.

Finally, minedge, the objective variable, is also a shared variable. Thus, there exists
a feasible solution to L Pk of the same value. Since this holds for every feasible solution
to L Pk+1, we have shown that Coherence(L Pk) ≥ Coherence(L Pk+1).

As a direct consequence, any chain extending π is always at most as coherent as π .
Therefore, Coherence(π) is an optimistic evaluation for each of its extensions, and we
can use it without compromising optimality. In lines 11–12 we call evalLP to evaluate
chains using the LP from Section 2.2.

Using the LP to evaluate chains has many benefits; in particular, solving the LP is
very quick, usually taking a fraction of a second. In fact, it is so quick that we can use
an Integer Program (IP) solver and solve the problem with binary activations. Still,
the lemma hints at another shortcut we may take: when we extend chain π with edge
e, the value of the extended chain cannot exceed

min{Coherence(π), Coherence(e)}. (9)

If e happens to be a weak edge, we do not need to solve the LP for the extended chain
in order to know it is also weak.
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Algorithm 1: findOptimalChain(G, s, t, K)
input : G = (V, E) graph, s, t ∈ V, K integer.
output: A most coherent s-t chain of length K using only edges from E.

1 foreach v ∈ V compute possible distances from s to v and from v to t ;
2 if no s-t chain of length K exists then
3 return ∅ ;

// Calculate an upper limit for edge coherence

4 foreach (u, v) ∈ E do
5 val(u,v) = evalEdge(u, v) ;

6 Q = New priority queue ;
7 Insert 〈(s), 0〉exact into Q ;
8 while Q �= ∅ do
9 Extract p = 〈π, valπ 〉 from the top of Q ;

10 if p is marked ‘approx’ then // Replace with a tighter estimate:

evaluate with LP of Section 2

11 newvalπ= evalLP(π) ;
12 Insert 〈π, newvalπ 〉exact into Q ;

13 else // p is marked as ‘exact’

// Is it a solution? If not, find valid chain extensions

14 Let u be the last node of π ;
15 if u = t then // Found the best s-t chain of length K
16 return π ;

// Find all neighbours of u which can reach t in K − |π | − 1 steps, and

insert extended chain into the queue

17 foreach v ∈ validExtensions(u, |π |) do
18 Insert 〈(π, v), min{valπ , val(u,v)}〉approx into Q ;

We avoid unnecessary LP computations by caching the coherence of all single edges
in advance (line 5). Note that we do not have to solve the LP for single edges. Instead,
evalLP(u, v) computes the sum of influences of the top kTrans influential words for edge
(u, v). The result is precisely the coherence of the edge, and is very efficient to compute.
When we come across a chain for the first time, we evaluate it using Equation (9) (line
18). Only when the chain is chosen for expansion, we replace this approximation with
the tighter bound derived from the LP (lines 10–12).

THEOREM 3.2. Algorithm findOptimalChain always terminates with an optimal so-
lution, or returns ∅ if no solution exists.

PROOF. In line 1, the algorithm computes all possible distances from s and to t. The
algorithm exits on line 3 and returns ∅ if and only if s cannot reach t in K − 1 steps. By
definition, this is exactly the case when no solution exists.

The optimality part of the proof follows from the admissibility of the evaluation
function. When the algorithm terminates its search, it has found a chain whose actual
coherence is higher than the estimated coherence of any chain that extends any chain
in the queue. But since those estimates are admissible (and thus optimistic), we can
safely ignore the chains in the queue.

Each node expanded during the search requires solving a linear program of O(K ·
|W|) variables, which can be done in weakly polynomial time. In the worst case, the

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 24, Publication date: February 2012.



Connecting Two (or Less) Dots: Discovering Structure in News Articles 24:15

Fig. 8. Activation levels for the best s-t chain for different values of kTotal and kTrans.

number of nodes expanded is exponential in K. In practice, however, the search is
very quick. The following table shows a comparison between findOptimalChain and
the LP-based solution of Shahaf and Guestrin [2010] in terms of running time and
solution quality (percentage of the optimal solution; of course, the solution quality of
findOptimalChain is always 100%). As can be seen, findOptimalChain outputs better
chains faster.

findOptimalChain [Shahaf and Guestrin 2010]
Running Time (s) Quality Running Time (s) Quality

Elections 319 100% 859 88%

Pearl 282 100% 1086 64%
Lewinsky 92 100% 337 79%

OJ 255 100% 714 93%
Enron 71 100% 164 90%

3.2 The Effect of kTotal, kTrans

The LP of Section 2 has introduced two parameters, kTotal and kTrans. kTotal restricts
the total number of active words, and kTrans restricts the number of active words
per transition. The choice of parameters determines valid activation patterns, and
thus has a significant effect on the value of chains. To demonstrate the effect of these
parameters, we have chosen two articles about OJ Simpson’s trial. We have then
computed the best chain between the articles for different values of kTotal and kTrans.

Without loss of generality, we only consider cases where kTotal ≥ kTrans. If
kTotal � kTrans (and in particular, when kTotal approaches kTrans · (K − 1)), the
LP (or IP) can afford to pick kTrans different words for each transition. This re-
sults in a behavior similar to the shortest-path chains of Section 2. Figure 8(b) shows
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activation levels of the optimal chain. Note the short segments; as in Section 2, they
indicate the lack of a global theme.

Setting kTotal = kTrans is equivalent to picking kTotal words to be active through-
out the chain. In other words, we are looking for kTotal segments of length K. Similar
to the way short segments encourage rare words, long segments push towards com-
mon words. See Figure 8(a): active words include names of key figures in the trial,
and generic words such as “editorial.” Note that the last segment is not of full length;
this implies that activating the word in the final transition would have no effect on our
weakest-link objective.

Medium-length segments (Figure 8(c)) seem to combine the best of both worlds.
Transitions are forced to share words between them, but these words do not have to
be common across the entire chain. In our experiments, we have found that kTotal

4 ≤
kTrans ≤ kTotal

2 often produces good results for K = 7. When kTotal is small, the words
tend to capture the essence of the story nicely, but the stories themselves tend to be
rather simple. As we increase kTotal, the stories become more and more complicated.
As before, increasing kTotal too much can result in behavior similar to the shortest-
path chains.

3.3 Scaling Up

Our algorithm is much faster than the LP solution of Shahaf and Guestrin [2010] in
practice, but it can take time exponential in the number of articles, D. Therefore, this
solution may not be feasible when D is large. In this section, we consider practical
ways to speed up the computation even more.

Selecting an initial set of documents. As mentioned, our approach may not be practical
when the number of documents is large. However, it can be profitably invoked on a
carefully and efficiently selected subset of the documents. We consider ways to restrict
the number of candidate articles for the s-t chain.

Picking documents similar to s and t works well when s and t are close, but breaks
down for complex chains. For example, impeachment is not an important word in s,t of
Figure 2, yet we should include these articles in our candidate subset. We propose to
use the same bipartite graph from Section 2.3, run random walks starting from s and
t, and pick the top-ranked articles. Since random walks start from s and t, we hope
that documents that are frequently reached from both will be ranked high. The same
idea may also be used to restrict W—the set of words.

We then find the best chain for the restricted set of articles. If the resulting chain
is not strong enough, we can iteratively add articles to the set. We add articles from
the time period corresponding to the weakest part of the chain, hoping to replace the
weak links by stronger ones. This way, we obtain an anytime algorithm that generates
a stream of chains, each one chosen from a larger set of candidate articles.

Restricting transitions. If every transition between two documents is possible, Algo-
rithm findOptimalChainmay evaluate O(DK) chains in the worst case. However, many
transitions are highly unlikely. In particular, if we guess that the value of the optimal
chain is τ , we can eliminate all transitions whose best possible coherence score is
weaker than τ . We use binary search to find τ .

For this reason, we have introduced input parameter G. G is a graph restricting
the transitions that can participate in the chain. In the simplest case, G is a directed
clique; all transitions obeying chronological order are possible. Alternatively, we may
remove all edges whose best possible coherence is below some threshold. In our ex-
periments, we have chosen to restrict the degree of G instead. For each v ∈ V, we
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have used a technique similar to the random walks of Section 2.3 to determine v’s top
d neighbors, and included only those edges in G.

Restricting the transitions speeds up computation significantly. In addition, this
approach also leads to a natural anytime algorithm: one can start from a sparse G and
incrementally add edges.

Approximate solutions. Many techniques have been proposed to speed up informed
best-first strategies. For example, we may continue to expand a node even if its merit
is not the highest in the queue. For example, if we keep expanding a node whenever
it is at least (1 − α) times the best node we have seen so far (for some α ∈ (0, 1)), we
are guaranteed to end up with a (1 − α)-approximation algorithm. This approxima-
tion is often faster in practice. In addition, our algorithm can be generalized into a
bidirectional heuristic search.

4. EVALUATION

Performance evaluations of information retrieval tasks often focus on canonical labeled
datasets (e.g., TREC competitions) amenable to the standard metrics of precision, re-
call, and variants thereof. The standard methods do not seem to apply here, as they
require labeled data, and we are not aware of any labeled dataset suitable for our task.
As a result, we evaluated our methods by running them on real data and conducting
user studies to capture the utility of our algorithms as they would be used in practice.

We evaluate our algorithm on real news data from the New York Times and Reuters
datasets (1995–2003). We preprocessed more than half a million articles. These arti-
cles cover a diverse set of topics, including world news and politics, economy, sports,
and entertainment.

We considered some of the major news stories of recent years: the OJ Simpson trial,
the impeachment of Clinton, the Enron scandal, September 11th, and the Afghanistan
war. For each story, we selected an initial subset of 500–10,000 candidate articles,
based on keyword-search. The size of the candidate subset depended on the search
results. For example, the number of articles mentioning Clinton was much higher
than those mentioning Enron.

For each article, we extract named entities and noun phrases using Copernic Sum-
marizer2. In addition, the NYT dataset includes important metadata, such as taxon-
omy and section. We remove infrequent named-entities and very common nouns and
noun phrases (e.g., “year”). We then computed influence as described in Section 2.3.
Note that the Copernic weights do not depend on the subset of articles; had we used
another method, such as TF-IDF, the choice of corpus would affect the weights.

Our main goal was to construct chains representing the stories, and have users
evaluate them. For each story, we chose several pairs of articles. We then tried finding
chains linking each pair using the following techniques.

— Connecting-Dots. As described in Shahaf and Guestrin [2010], but using the round-
ing technique we had at the time of the user studies, based on iteratively removing
articles.3
The typical value of K was 6 or 7. kTotal was set to 15, and kTrans was set to 4.
Picking parameters is still an open challenge, but we found held-out stories to be
an effective method. We used the speed-up methods of Section 3.3, and allowed ten
minutes for the creation of a chain.

3During each iteration, we solve the LP from Shahaf and Guestrin [2010]. We exclude the article with the
lowest activation score from the next iterations (setting node-activei = 0). We stop when exactly K of the
node-activei variables are set to 1. Since at every iteration we remove one article, the process is guaranteed
to stop after |D| − K + 1 iterations. In practice, it reaches a solution within a few iterations.
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— Shortest-path. We constructed a graph by connecting each document with its near-
est neighbors, based on cosine similarity. If there was no such path, we increased
the connectivity of the graph until a path was found. If the path was too long, we
picked a subset of K evenly-spaced documents.

— Google News Timeline.4 GNT is a Web application that organizes news search results
on a browsable, graphical timeline. The dataset is different, making comparisons
harder. However, as GNT seems to include all of the New York Times articles, we
believe its dataset is a superset of our corpus.
The input to GNT is a query string. We constructed such a string for each story,
based on s and t, and picked K equally-spaced documents between the dates of our
original query articles. The strings we used were “Clinton Lewinsky,” “OJ Simpson,”
“Enron,” “Daniel Pearl”+“World Trade Center,” and “Lewinsky”+“Elections.”

— Event threading TDT [Nallapati et al. 2004] is a method to discover subclusters in
a news event and structure them by their dependency, generating a graph. We ran
TDT on the same corpus, and found a path in this graph from the cluster including
s to the cluster including t, and picked a representative document from each cluster
along the path. Again, if the chain was too long, we chose K equally-spaced articles.

Note that none of the other methods optimizes for a notion of coherence. Unfor-
tunately, we could not find any tool that was designed to optimize over an objective
similar to ours. The preceding methods were chosen since they represent the ways in
which a contemporary news-reader might try to learn a news story.

First, we presented 18 users with a pair of source and target article. We gauged their
familiarity with those articles, asking whether they believed they knew a coherent
story linking them together (on a scale of 1 to 5). We showed the users pairs of chains
connecting the two articles, generated by the preceding methods in a double-blind
fashion. We asked the users to indicate the following.

— Relevance. Which chain captures the events connecting the two articles better?
— Coherence. Which chain is more coherent?
— Redundancy. Which has more redundant articles?

By asking users to indicate coherence, we wanted to see whether the objective we
propose captures the users’ intuitive notion of coherence. Relevance and redundancy
are two properties that we deemed essential for a good chain, despite not directly
optimizing for them.

Helping users gain better understanding of a story is the main goal of this article.
In order to quantify this, we also measured the effectiveness of the chains. We asked
users to estimate how their answer to the familiarity question changed after reading
each chain. Effectiveness is the fraction of the familiarity gap closed. For example, if
the new familiarity is 5, this fraction is 1 (gap completely closed). If the familiarity did
not change, the fraction is 0.

Example output chains are shown in Figure 9. Figure 10 shows the results of our
user study. After analyzing the results, we identify two types of stories: simple and
complex. Simple stories tend to focus around the same event, person or institution
(e.g., the OJ Simpson trial/the Enron story). Those stories can usually be summarized
by a single query string. In complex stories, however, the source and target article
are indirectly connected through one or more events (e.g., Lewinsky-impeachment-
elections, September 11th-Afghanistan war-Daniel Pearl).

The top plot shows the effectiveness (closing the familiarity gap) for each of the
methods. The bottom of the plot shows familiarity scores for each story before reading

4http://newstimeline.googlelabs.com
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Fig. 9. Example output chains for Connect-Dots and Google News Timeline. Users were given
access to the full articles. The GNT chain is a lot less coherent, and includes several insignificant
articles, e.g., an article about a domain name that once belonged to bin Laden’s family.

any chain. For example, we can see that the Enron story is the least-known story out
of the five.

Our algorithm outperforms the competitors on all stories but Enron. The difference
is especially pronounced for complex stories. In simple stories, such as Enron, it seems
that the simple method of picking K evenly-spaced documents from GNT was sufficient
for most people. However, when the story could not be represented by a single query,
the effectiveness of GNT decreased.

Surprisingly, the performance of GNT for the OJ story was much worse than its
performance for the Enron story. A closer examination revealed that the number of
articles about OJ far exceeded the number of Enron articles. Many of the OJ articles
were esoteric at best, so picking equally-spaced K documents tended to produce poor
results (a book of a former juror made it to the best-seller list, etc.). Furthermore,
more of our users were familiar with the OJ story beforehand, so there was less room
for improvement.

As expected, shortest path did not perform well. Event threading achieved better
results; however, for simple stories, sometimes the clusters were too big. In the Enron
story, both s and t belonged to the same cluster, rendering the chain useless. Also,
the fact that we pick a representative for each cluster at random might have hurt its
performance.

The plot on the bottom of Figure 10 shows the percentage of times each method
was preferred to another in terms of relevance, coherence, and nonredundancy. Users
could prefer one chain, or state that both are equally good/bad. Therefore, the numbers
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Fig. 10. Top: Evaulating effectiveness. The average (over users) of the fraction of familiarity gap, which
was closed after reading a chain. Numbers at the bottom indicate the average familiarity with each story (on
a scale of 1 to 5) before reading any chain. Bottom: Relevance, coherence, and nonredundancy (broken down
by simple vs. complex stories). The y axis is the fraction of times each method was preferred, compared to
another chain. Users could mark chains as “equally good,” and therefore the numbers do not sum to 1. Our
algorithm outperformed the competitors almost everywhere, especially for complex stories.

do not sum to 100%. The results are grouped based on the type of story (simple vs.
complex). Our algorithm is among the best in all measures. Most importantly, it
achieves the best coherence scores, especially for complex stories. We discuss some of
the interesting findings in the following.

Relevance and redundancy. As expected, for all methods, relevance is good for simple
stories but achieving low redundancy is harder. There is a tradeoff—redundancy is
easy to avoid by picking random, possibly irrelevant, articles. Relevance is easy to
achieve by picking articles similar to s or t, but then redundancy would be high.

Google News Timeline does well in terms of relevance for simple stories. However,
the chains it generates tend to include somewhat insignificant articles, especially for
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Fig. 11. Chain refinement. The starred article was added in order to strengthen the last link.

complex stories. The clusters of Event Threading seem to reduce its redundancy, com-
pared to shortest-path.

Coherence. Together with effectiveness, this is perhaps our most important metric
for evaluating this work. Our algorithm outperforms the other methods, especially in
the complex case. This indicates that the notion of coherence devised in this article
matches what the actual users perceive. Interestingly, event threading outperformed
GNT for complex stories. This is because the GNT keywords were based on s and t,
and did not capture the intermediate events.

5. INTERACTION MODELS

Thus far, we have defined a way to find chains connecting two endpoints. However, the
user may not find the resulting chain satisfactory. In information retrieval systems,
the solution is often to let the users revise their queries; for a complex information
need, users may need to modify their query many times. In this section, we propose
taking advantage of the structured nature of the chains, and explore more expressive
forms of interaction. We explore two different types of user feedback: refinement of a
chain, and tailoring to user interests.

Refinement. When presenting a chain to a user, some of the links in the chain may not
be obvious. Moreover, the user might be especially interested in a specific part of the
chain. For example, a user not familiar with the details of the Lewinsky story might
want to further expand the first link of Figure 2 (right). We provide the user with a
mechanism to indicate areas in the chain that should be further refined; a refinement
may consist of adding a new article, or replacing an article that seems out of place.

Since evaluating a single chain is quick, the refinment process is very efficient.
Starting from the original chain, we try all possible replacement/insertion actions. We
evaluate each chain (see Section 2), and return the best one.

In Figure 11, the starred article is the result of an insertion request. Adding the
article strengthened the end of the chain, while maintaining the global theme.

Incorporate user interests. There can be many coherent ways to connect s and t, espe-
cially when they are about similar topics. For example, consider the OJ Simpson trial
story. Suppose the user is interested in the racial aspects of the case, but our algorithm
finds a chain focusing on the verdict. We provide a mechanism for the user to focus the
chains around concepts they find important. In our case, the user may increase the
importance of “racial” or “black,” and perhaps decrease the importance of “verdict.”
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Fig. 12. A demonstration of our interactive component. The original chain is at the top left. The rest are
derived from it by requesting the words “black,” “DNA,” and “DNA”×2. For each chain we show activation
levels for the most important words, and a few selected articles.

In order to take the user’s feedback into account, we augment our objective with
importance weight πw for each word w.

∑
w

πwInfluence(di, di+1 | w)�(w active in di, di+1),

πw are initialized to 1. When a user likes a word, its importance is increased by a
multiplicative factor,

πw = πw · (1 + α).

When the user dislikes a word, its weight is decreased by a (perhaps different) fac-
tor. These factors were determined empirically, and may change over time (similar to
online learning techniques). In order to avoid having to click many words, we use word
cooccurrence information to distribute the effect among related words. For example,
when a user clicks on “DNA,” the words “blood” and “evidence” increase a little too.
We use a method similar to the one in Section 2.3 to compute the cooccurrence score
of word w, co-occur(w): using the same bipartite graph, co-occur(w) is the station-
ary distribution for random walks starting from the chosen word. Then, we update
each πw.

πw = πw · (1 + co-occur(w)) · α.

Figure 12 shows an actual output of the system. The figure depicts four chains:
for each, it shows activation levels for the most important words and a few selected
articles. The top-left chain (before any interaction took place) focuses on the verdict.
The other chains are derived from it by increasing the weight of “Black” (top right)
or “DNA” (bottom left). The bottom-right chain is the result of increasing the weight
of “DNA” twice. As can be seen, increasing the weight of a word causes the chain to
change its focus. The “Black” chain focuses on racial issues, and the “DNA” chains
focus more and more on the testimony of the DNA expert.
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Another way to interpret the user’s feedback is as a constraint. Under this inter-
pretation, the user imposes constraints on the accumulated influence of specific words
in the chain. We keep a window for each word, representing the allowable range of
total activation throughout the chain. The window is initialized to [0, K − 1]: the word
may not be active at all (zero total activation), or it may be fully active throughout the
entire chain (total K − 1 units). We update the window in response to user actions.
Suppose that the user indicates that they want more of a word w, after seeing a chain
in which w had total activation ρ. This implies that the user wants the total activation
of w to be higher. If the current window for w is [clow, chigh], we increase clow.

c′
low = chigh − ((chigh − ρ) · α),

for some α ∈ (0, 1). If the user wants less of word w, we decrease chigh in a similar way.
After updating the range window, we find the most coherent chain subject to the new

constraints. If the user wanted more of word w, the resulting chain will demonstrate
higher levels of influence for w, compared to the previous chain. By letting users
indicate desired influece levels, they can change the focus of the chains.

Combining interaction types. The idea of personal word-preferences might also be use-
ful for the refinement task. Suppose the user asked to replace an article di; if there
are many articles similar to di, local search is likely to return one of them. We can
implement a mechanism similar to our work in El-Arini et al. [2009] to find words that
might be attributed to the user’s dislike of di, and decrease their importance. This way,
the replacement article will not be similar.

5.1 Evaluation

We conducted another user study to evaluate how well our algorithm personalizes the
chains it selects in response to user feedback. We tested both aspects of feedback.

Refinement. We showed the users a chain, and asked them to perform a refinement
operation (asking for insertion/replacement). We then returned two chains, obtained
from the original chain by (1) our local search, (2) adding an article chosen randomly
from a subset of candidate articles (Section 3.3), obeying chronological order. We asked
the users to indicate which chain better fit their requests. Users preferred the local-
search chains 72% of the time.

User interests. We showed users two chains—one obtained from the other by increas-
ing the importance of 2–3 words. We then showed them a list of ten words containing
the words whose importance we increased, and other, randomly chosen, words. We
asked which words they would pick in order to obtain the second chain from the first.
Our goal was to see if users could identify at least some of the words. Users identified
at least one word 63.3% of the times.

In the future, we plan to test this component by allowing users to specify their own
interests, and measuring their satisfaction. However, as the results of this future study
are harder to compare across users, we chose to focus on experiments that will make
the comparison clearer, although narrower.

6. CONNECTING ONE (OR LESS) DOTS

The system we have presented in the previous sections provides a simple mechanism
to connect two fixed endpoints. However, in many real-life domains, this type of query
is unnatural. Consider, for example, a researcher trying to understand the state of
the art in some field. For him, there are no clear endpoints to connect. Even in our
news domain, for which we developed the fixed-endpoint mechanism, this type of query
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might be inappropriate. Users might not always know both the starting and ending
points of a story. A more natural query mechanism allows users to fix a single article,
and ask how the story developed from that point.
In this section, we consider the problem of forming a coherent chain when the end-
points are only partially specified.

Is this problem harder than our original problem? On one hand, the number of
chains to consider is much larger. On the other hand, our algorithms seem easy to
extend for the case of partially specified endpoints. If the start (end) point is unknown,
we can add a virtual source (sink) node, connect it to all other nodes, and proceed as if
the new node was a part of the input.

Let us demonstrate what happens when we extend our algorithm using virtual
sources and sinks. Consider again the example from Figure 2. Instead of specify-
ing both endpoints (Clinton’s alleged affair and the 2000 election Florida recount), our
input consists of the Clinton-Lewinsky article alone. The most coherent chain starting
with this article is�

�

�

	

• Talks over Ex-Intern’s Testimony on Clinton Appear to Bog Down
• Is the Ex-Intern Getting Hostility or Sympathy?
• Lewisnky Would Take Lie Test in Exchange for Immunity Deal
• Calls to Intern from Clinton are the Envy of the Capital
• In America: The Clinton M.O.
• Lewinsky Ordered before Grand Jury on Ties to Clinton

As can be seen, the entire chain revolves around the Clinton-Lewinsky story. Fur-
thermore, it is restricted to the very beginning of the story: in fact, the articles barely
span more than a month’s time.

Note that having two fixed endpoints served a purpose: it indicated possible direc-
tions that the user cares about. For example, specifying the Florida recount article
forced the story to advance along the contemporaneous political events. Furthermore,
when only a single endpoint is given, there is no incentive to ever change the topic,
and the best chains would likely revolve around their starting point. Worse yet, when
no endpoints are specified, this starting point might be uninteresting to the user.

In light of this, picking the most coherent chain no longer suffices. Instead, the key
challenge seems to be balancing coherence and interest. It is not enough for a chain to
be coherent; it should also cover topics that are important to the user.

How do we know which topics are important to the user? We start by having the
user guide us as we build the chain. In the following we define an interactive variant
of Connect-the-Dots, called Connect-A-Dot. In Connect-A-Dot, the user fixes a single
article d, and incrementally builds a chain around it.

We focus on the case where d is either the first or the last article in the chain (Where
Do We Go From Here? and How Did We Get Here?, respectively). However, our tech-
niques apply to the case d is located at other positions as well.

6.1 Algorithm Overview

Intuitively, the algorithm is an interactive version of our search algorithm from Sec-
tion 3, where the user guides the search. Our system starts from an input article and
incrementally adds articles to the chain. At each step, the system computes the set of
valid extensions to the current chain, which reach a certain coherence threshold. The
valid extensions represent the many ways in which the chain can progress; we rely on
user feedback to choose the next article. Unfortunately, the set of candidate articles is
often too big to display. Therefore, our main challenge is to pick a small set of diverse
candidate articles that cover all major aspects of the story.
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Algorithm 2: interactiveConnectDot(G, d, isForward, b )
input : G = (V, E) graph, d ∈ V, isForward boolean indicating direction of time, b number

of alternatives to show the user.

// Initialize the chain
1 curChain = (d);
2 while true do

// Find candidate articles
3 Cands= findExtensionsAboveThreshold(G, curChain, isForward) ;

// Find a small subset which covers Cands well
4 A = maximizeCoverage(Cands, b ) ;

// Display subset to user, extend the chain by user’s choice
5 v = getUserChoice(A) ;
6 curChain = extendChain(curChain, v, isForward) ;

For example, consider a user who is interested in the story leading to Guantanamo
Bay closing. The user picks an input article and feeds it to the system. We then
consider valid extensions of the input article. For example, some major aspects of the
story (which we should cover) are Obama’s promise, legal aspects, NGO reports, and
suicide attempts.

Our algorithm’s outline is described in Algorithm 2. At each iteration, our goal
is to pick k candidate articles and show them to the user. The articles should cover
the different ways in which the chain may progress. In the future, we may enforce
a minimum step size, to ensure that the chain is providing enough new information.
As a first step, we calculate the set of documents Cands, which can serve as valid
extensions to the chain we have built so far (Line 3). findExtensionsAboveThreshold
evaluates all O(|D|) possible documents, and keeps the ones that are above a given
threshold (either absolute or relative). Picking a good threshold is left for future work;
in our experiments, we have found that keeping the top 10–20% provides breadth of
topics without sacrificing coherence. Evaluating a single chain is done via the LP of
Section 2.2, and takes very little time.

Next, we wish to pick a subset A ⊆ Cands of size b , which maximizes coverage
of Cands (Line 4), displays them to the user, uses their choice to extend the chain
(Lines 5–6), and reiterates. Line 4 lies at the heart of the algorithm. Before we can
implement it, we first need to define coverage. Luckily, this is very similar to a problem
we previously tackled in El-Arini et al. [2009], our goal was to pick a subset |A| = b of
blog posts that covers the important stories in the blogosphere. Nevertheless, the same
principles apply to any corpus of documents—and in particular, to the set of documents
that could extend the chain. In the following, we briefly review those principles.

In order to define coverage, we first define the set of objects we are trying to cover.
We refer to those objects as features. Features can be any arbitrary collection of objects,
high- or low-level, e.g. significant words (such as named entities and noun phrases),
topics extracted from the corpus, or even higher-level semantic relations. Documents
are characterized by features: the relation between documents and features is cap-
tured by the covering function. More formally,

Definition 6.1 Corpus. A corpus is a triplet 〈 U,D, cover·(·) 〉.
U = {u1, u2, ...} is a finite set of features, and D is a finite set of documents.
The relation between documents and features is captured by the covering function. For
each dj ∈ D, cover j(·) : U → R

+ quantifies the amount document j covers feature i.
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The coverage function cover·(·) is a part of the input. In the simplest case, cover·(·) is
a binary indicator function, which effectively turns documents into subsets of features.
In El-Arini et al. [2009], we explored softer notions of coverage functions, e.g., ones
with probabilistic interpretations.

The coverage function is defined over single documents. However, we want to quan-
tify the amount to which a set of candidate documents covers each feature i. For this
reason, we wish to extend the coverage function to a function over sets of documents,
coverA(i). We view set-coverage as a sampling procedure: each document tries to cover
feature i with probability cover j(i). The feature is covered if at least one of the docu-
ments in the set A succeeded. Thus, as A grows, adding a document provides less and
less extra coverage of feature i. Formally, we can define the probabilistic coverage of a
feature by a set of documents A as

coverA(i) = 1 −
∏

dj∈A
(1 − cover j(i)). (10)

We now know how much a set of documents covers each feature. However, some
features are more important to cover than others. Next, we assign weights wi to each
feature ui, signifying the importance of the feature. For example, if features are words,
the weights can correspond to their frequency in the dataset. Finally, we model proba-
bilistic coverage of the entire corpus as

F(A) =
∑
i∈A

wicoverA(i). (11)

Our goal now is to find the set of documents A that maximizes this objective func-
tion. Unfortunately, we can show by reduction from maximum coverage that this ob-
jective is NP-complete, suggesting that the exact maximization of this objective is in-
tractable. Fortunately, our objective function satisfies an intuitive diminishing returns
property: submodularity, which will allow us to find good approximations very effi-
ciently. Although maximizing submodular functions is NP-hard [Khuller et al. 1999],
we can take advantage of several efficient approximation algorithms with theoretical
guarantees. In particular, we use the classic result of Nemhauser et al. [1978] which
shows that the greedy algorithm obtains a (1 − 1

e ) approximation.
Now that we know how to pick a small set of documents that approximately max-

imizes coverage, we note that we can use the exact same method when no endpoints
are specified (Connect-No-Dots). In this case, the user first selects a set of candidate
documents (e.g., by performing keyword search), and we then use the greedy algorithm
to propose a diverse set of candidate starting points. In the following, we demonstrate
this technique.

6.2 Usage Example

We demonstrate our system on the New York Times dataset. We define our set of fea-
tures as topics from a latent Dirichlet allocation (LDA) [Blei et al. 2003] topic model
learned on the noun phrases and named entities described in the preceding. We can
directly define cover j(i) = P(ui | dj), which in the setting of topic models is the probabil-
ity that dj is about topic i. We use the Mallet [McCallum 2002] implementation of LDA
with 20 topics and the default parameter settings. When we start from the general
keyword “OJ Simpson,” our top five suggestions for a starting point are the following.

(1a) A Bit Reluctantly, a Nation Succumbs to a Trial’s Spell;
(1b) Few Can Avoid Harsh Glare Of Murder Trial’s Spotlight;
(1c) Evidence Is Powerful, but He’s Still O.J.;
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(1d) The Simpson Factor in Race Relations;
(1e) Jurors and Judge Ito: Their Private Lives.

Those articles cover various aspects, from the media coverage, through evidence,
race relations, and even judge and jury. When we pick (1c) evidence, the system pro-
poses the following options.

(2a) Tempers Flare Over Simpson DNA Expert’s Drug Use;
(2b) Blood Drops Analyzed for Simpson Jury;
(2c) Coroner Says Time of Death Is Imprecise;
(2d) Simpson Defense Changes Glove Tactics;
(2e) Former Simpson Juror Sees Weak State Case.

Most of the articles are related to evidence, but they cover different types of evi-
dence, e.g., blood and time of death. When we pick (2d) glove, the system starts to
converge. The articles are still mainly about evidence, and almost all of them mention
the gloves.

(3a) Blood on a Simpson Glove Matches Victim’s, Expert Says;
(3b) Near-Unanimous Verdict: Blunder at Simpson Trial;
(3c) Key Fibers Linked to Simpson Vehicle;
(3d) Simpson Defense Changes Glove Tactics;
(3e) North Carolina Judge Rules Against Simpson Legal Team.

Suppose that, in the previous step, we would have picked article (2a) DNA, instead
of (2d) glove. In this case, the algorithm’s choice of articles would be very different,
and much more focused around DNA evidence:

(3a′) Simpson Prosecutors Decide Pathologist Won’t Testify;
(3b′) Blood on a Simpson Glove Matches Victim’s, Expert Says;
(3c′) Simpson DNA Papers Go to Smithsonian;
(3d′) Again Suggesting Botched Inquiry, Simpson Defense Cross-Examines State DNA

Expert;
(3e′) At the Bar; The jury is still out on the effects of long, televised trials.

7. RELATED WORK

To the best of our knowledge, the problem of connecting the dots via a coherent path is
novel. There has been extensive work done on related topics, from narrative generation
to identifying and tracking news events.

The narrative generation community [Niehaus and Young 2009; Turner 1994] has
sought to explore the notion of narratives and ways to model them. What makes nar-
rative different from a list of events? How can narratives be modeled? However,
their task seems to be fundamentally different. Much of the work involves produc-
ing natural-language experiences for a user (e.g., a computer game), and focus on
planning-like operators and inferences. In contrast, we do not try to generate any
natural-language content, neither do we make up new plots. Our contribution lies in
finding a good chain of documents within a given dataset. Nevertheless, some of the
work done on evaluating narratives [Rowe et al. 2009] may be useful for our purposes.

The search community has explored issues relating to our work. The Athens Sys-
tem [Vats and Skillicorn 2004] discovers novel information, whose existence is not
suspected, given an initial set of keywords. The MMR [Carbonell and Goldstein 1998]
metric aims at combining query relevance with information novelty, thus encouraging
diversity. As opposed to our system, both methods assume a simple keyword query.
Their output is also restricted to a list of documents (or clusters), with no attempt
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at linking them into a coherent picture. However, it may be interesting to try and
combine these methods with our Connect-A-Dot coverage notion (Section 6).

As for event tracking, some efforts have been made to classify news stories into
broad categories using pattern matching and machine learning [Masand et al. 1992].
However, these methods assume the labels are known in advance, and thus are not
applicable. Event detection [Kleinberg 2002; Yang et al. 1999] deals with discovering
new events, but does not attempt to string different events together.

In contrast, email threading [Lewis and Knowles 1997] tries to discover connections
between related email messages. This is closer to the task we have in mind, but much
easier, since email usually incorporates a strong structure of referenced messages.

In work closest to ours, Nallapati et al. [2004] and Mei and Zhai [2005] studied
how to discover subclusters in a news event and structure them by their dependency,
generating a graph structure. However, they do not address the notion of coherence
at all; constructing a chain of coherent articles from the output graph is hard, as we
have seen in the experimental section. In addition, it seems like the method is best-
suited for simple news stories—stories that can be summarized in one or two keywords
(“tsunami,” in Mei and Zhai [2005]). It is not clear how well this method does for more
complex stories.

Other lines of research have explicitly proposed connecting two endpoints. Heath
et al. [2010] propose building graphs, called Image Webs, to represent the connections
between images in a collection, and discover meaningful paths in them. Images may
depict the same static scene, or they may be related in a more subtle way (for example,
two different buildings at a university are connected by a campus bus that frequently
stops near each building). However, as the authors’ main tool for path discovery was
shortest-path, their chains may exhibit stream-of-consciousness behavior, similar to
the shortest-path chains of Section 2.

Kumar et al. [2006] formulate a new data mining problem, called storytelling, as
a generalization of redescription mining. Storytelling aims to explicitly relate object
sets that are disjoint by finding a chain of approximate redescriptions between the
sets. For example, if some London travel books (Y ) overlap with books about places
where popes are interred (G), and some of which are books about ancient codes (R),
then the sequence of approximate redescriptions Y ⇔ G ⇔ R is a story.

The strength of a story is determined by the weakest transition. The strength of a
transition measured by its Jaccard coefficient (the ratio of the size of common elements
to elements on either side of the redescription). Since this is a local measure, any global
notion of coherence is lost again.

Several methods have concentrated on connecting two points of interest via mul-
tiple paths. In Faloutsos et al. [2004], the goal is to extract a small (amenable to
visual inspection) subgraph that best captures the connections between two nodes of
the graph. The authors interpret the graph as an electrical network, and choose the
subgraph that can deliver as much electrical current as possible. In Hossain et al.
[2010], the goal is to find hammock paths, which are a generalization of traditional
paths. Both electrical networks and hammock paths offer some insight regarding the
connection between their endpoints. However, compared to our chains, they have little
structure.

In conclusion, our work differs from most previous work in several important
aspects—expressing information needs and structured output and interaction. Often,
users know precisely what they want, but it is not easy for them to distill this down—
to a few keywords. Our system’s input method (related articles) might facilitate this
task. Our system’s output is interesting, too—instead of the common list of relevant
documents, or a graph of strong but local connections, our output is more structured:
a chronological chain of articles maximizing a global coherence measure, and the flow
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of influences along it. Often, visually exploring a system’s results and interacting with
it can reveal new and interesting phenomena.

8. CONCLUSIONS AND FUTURE WORK

In this article, we describe the problem of connecting the dots. Our goal is to help
people fight information overload by providing a structured, easy way to navigate be-
tween topics. We explored different desired properties of a good story, formalized it as
a linear program, and provided an efficient algorithm to connect two articles. Finally,
we evaluated our algorithm over real news data via a user study, and demonstrated its
effectiveness compared to other methods, such as Google News Timeline. Our system
is unique in terms of input and output, and incorporating feedback into it allows users
to fully exploit its capabilities.

Several avenues for future work readily suggest themselves.

Representation. Some stories cannot be fully represented as simple chains. In the
future, we plan to explore richer forms of output, allowing for more complex tasks,
e.g., creating a road map—a set of intersecting chains that covers a topic from several
aspects.

Semantics. In this work, we have concentrated on syntactic features (in particular,
words) as the fundamental building blocks of news stories. In fact, one of our goals was
to explore whether simple, superficial features can be used to evaluate the coherence
of a chain. In the future, we plan to introduce more high-level semantic features,
extracted automatically [Mitchell et al. 2009] or manually.

In particular, it will be interesting to think of more qualitative notions of influence,
and see how plugging them into our framework affects the resulting chains. For ex-
ample, we expect semantic features to mitigate the importance of different writing
styles. Our current technique may connect articles by the same reporter more often
than expected, since reporters often have typical choices when synonyms are available;
high-level features should reduce this problem.

Context-specific chain length. Some articles can be connected by a short chain, while
others require a much-longer chain. However, in our current formulation, the user is
required to specify the desired chain length K. Other formulations may be possible,
e.g. designing an algorithm that will not take chain length as an input parameter.

Document quality. In this work we have used the New York Times corpus, where we
regard all articles to be top-quality. Other corpora, however, feature articles of varying
quality. In the future, we plan to take article quality into account when composing
chains.

Query characteristics. We plan to explore the behavior of our system under different
query characteristics. For example, in our experiments we only considered news sto-
ries that were associated with popular events. It would be interesting to test the ap-
proach for news stories that are less prominent in our news corpus.

In addition, we have only evaluated pairs of documents that are related. If the input
documents are not related, our system will still find the most coherent chain between
them, but that chain is likely to be bad. Indicating absolute chain quality is still an
open question. In particular, the coherence of the chain does not provide a meaningful
score to the user. In the future, we wish to find an absolute quality measure.

We believe that the system proposed in this article may be a promising step in the
battle against information overload. The ability to connect two pieces of information
and form a logical, coherent story has applications in many areas, such as e-learning,
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intelligence, and scientific discoveries. The notion of coherence may be very different in
different domains; for example, in biology, coherence might stem from causally-related
molecular processes in a cell. Nevertheless, we expect that some notion of coherence
will be fundamental to discovering connections in many domains.

In addition, we plan to apply our techniques to multiple domains at once, as signifi-
cant scientific discoveries can come from forming connections between different fields.
We believe that tools to automatically connect the dots can be a great vehicle to enable
new discoveries.
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