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ABSTRACT
Crowdsourcing has become a popular method for collecting labeled

training data. However, in many practical scenarios traditional

labeling can be difficult for crowdworkers (for example, if the data

is high-dimensional or unintuitive, or the labels are continuous).

In this work, we develop a novel model for crowdsourcing that

can complement standard practices by exploiting people’s intuitions

about groups and relations between them. We employ a recent

machine learning setting, called Ballpark Learning, that can estimate

individual labels given only coarse, aggregated signal over groups

of data points. To address the important case of continuous labels,

we extend the Ballpark setting (which focused on classification)

to regression problems. We formulate the problem as a convex

optimization problem and propose fast, simple methods with an

innate robustness to outliers.

We evaluate our methods on real-world datasets, demonstrating

how useful constraints about groups can be harnessed from a crowd

of non-experts. Our methods can rival supervised models trained

on many true labels, and can obtain considerably better results

from the crowd than a standard label-collection process (for a lower

price). By collecting rough guesses on groups of instances and using

machine learning to infer the individual labels, our lightweight

framework is able to address core crowdsourcing challenges and

train machine learning models in a cost-effective way.
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1 INTRODUCTION
In many real-world learning scenarios, acquiring labeled training

data is a challenging bottleneck for researchers and practitioners.

Crowdsourcing has become a popular approach for annotating large

quantities of data. Platforms such as Amazon’s Mechanical Turk

allow researchers to distribute labeling tasks to a large number of

crowdworkers, resulting in an effective mechanism for annotating

data for supervised learning models [19, 27].
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Despite its many benefits, crowdsourcing is not a panacea for

data labeling. Crowdworkers are not domain experts, and often

are careless or make mistakes, generating unreliable labels. Since

crowdworkers are error-prone, it is common to ask multiple work-

ers to label each data point, which might make the labeling process

prohibitively expensive. In particular, crowds tend to be biased [28],

requiring special methods to de-bias their answers.

In addition, some tasks cannot be crowdsourced due to inherent

hardness of the task. The input might not be interpretable to most

people (e.g., medical EEG data), or the output might be difficult to

assess (e.g., continuous targets are notoriously hard for annotators

[28]). Other times one cannot show people individual data points

for labeling, especially due to privacy considerations.

In this paper we propose a different approach to crowdsourc-

ing, which could mitigate these problems. Rather than collecting

labels for individual data points, we focus on collecting coarse,
aggregated information over groups of points, and using this

information to infer individual labels. Instead of investing re-

sources in trying to get precise labels, we propose a lightweight

framework that pools noisy crowd guesses over group averages

and comparisons, and uses recent advances in machine learning to

turn them into instance-level predictions.

For example, consider an advertising company. To optimize ad

display, demographics are widely used to characterize customers.

However, in practice such information (e.g., age, gender or richer

targets like medical conditions) is usually unavailable [4].

Despite not having this information, the company might have

access to millions of user-behavior mobile traces: session data, geo-

location information, data derived from motion sensors, device

specs, connection data, and more. These patterns are hard to inter-

pret, rendering the data very difficult to label. Even if the company

could solve the glaring privacy issues, it is left with potentiallymany

millions of high-dimensional, complex pieces of information about

users’ mobile usage. Labeling this kind of data instance-by-instance

is likely to be a painstaking, error-prone process [30].

Instead of trying to label individual users, it might be easier

to obtain some coarse signals on groups of users. For example,

Millennials text more and talk less [10]. People who tend to stay

up and wake up late are more likely to be single [14]. Advertisers

could, of course, be interested in going beyond basic demographics,

wishing to learn about health issues or political leanings, which are

not directly reflected in mobile usage. This renders the attempt to

label individual mobile usage patterns even more problematic [30],

while getting estimates on groups may be far more feasible.

We take advantage of a new machine learning setting we have

proposed in [9], called Ballpark Learning. In the Ballpark setting

we have unlabeled instances divided into bags, and we are given

some aggregate information about label averages in bags in the

form of loose constraints. For example, the bag of people who barely
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text has a higher average age than the bag of people who text often.

Using only this kind of aggregate information, the goal is to predict

individual labels – i.e., demographics of individual users.

We suggest that the Ballpark setting is particularly useful for

crowdsourcing: Instead of asking the crowd to label particular users,

we could construct bags of users based on some simple attributes

(e.g., monthly volume of text messages) and ask people to guess

which bag has older users, and by how much.

Using Ballpark learning can help address the shortcomings of

crowdsourcing discussed above. Coarse guesses on simple groups

require less expertise than individual labels, and fewer questions

asked, as each question provides information for many datapoints.

The datapoints we show the crowd are interpretable, since we can

focus on a few intuitive dimensions and let the machine learning

method take advantage of the other, less intuitive ones. The need

to de-bias the crowd is also less pronounced, because our approach

only requires wide intervals around the true average. Finally, there

are no privacy concerns, as we never show crowdworkers indi-

vidual datapoints. (Interestingly, estimating individual labels from

group statistics does have important implications regarding pri-

vacy, as Ballpark techniques can be used on sensitive data; however,

crowdworkers are only exposed to aggregated data.)

Our key contributions are:

• We propose a new model for crowdsourcing that can com-

plement standard practices by exploiting people’s intuitions

about groups and relations between them. We exploit the nat-

ural human tendency for intuiting on groups and the tendency

for comparison [23] to glean interesting, informative patterns.

To the best of our knowledge, we are the first to focus on

comparisons between groups as an important part of labeling.

• We adapt our recent machine learning setting, Ballpark Learn-

ing, to crowdsourcing, and demonstrate its effectiveness. To

address the important case of continuous labels (which are

notoriously hard for crowdworkers), we extend the Ballpark

setting into regression. We formulate the Ballpark regression

problem as a convex optimization problem and present fast,

simple methods to solve it with a natural robustness to outliers

that compares favorably to robust regression techniques.

• We demonstrate our results on real-world datasets and show

that by using weak constraints harnessed from a crowd of

non-experts, our methods are able to achieve results that rival

supervised models based on many true labels. We discuss

various ways to query the crowd for these constraints. In our

experiments, we obtained better results than those reached by

standard label collection – at less than a third of the price.

2 PROBLEM FORMULATION
We now present the Ballpark Learning framework. In the following

sections, we will demonstrate its usefulness for crowdsourcing.

Consider a set of N training instances XN = {x1, x2, . . . , xN }.
Each xi has a corresponding unknown label y∗i ∈ Y. We extend our

previous work [9] and allow label space Y to be discrete or con-

tinuous, depending on the setting. Along with unlabeled instances

XN , we could be given a (possibly empty) set of L labeled training

instances XL = {xN+1, . . . , xN+L} with known targets yi , where
typically the vast majority of instances are unlabeled: N ≫ L. In

addition, we are given a set of K subsets of X, which we call bags:

B = {B1,B2, . . .BK },Bk ⊆ XN ∪ XL .

For example, B1 could be the group of mobile users who tend to

wake early in the morning, while B2 could be those users who stay

up late at night. Note that bags B may overlap, and do not have to

cover all training instances XN .

Finally, we have constraints associated with the labels within

bags ({y∗i : i ∈ Bk }). For example, we might have rough bounds on

the label average in some bag, or know that the average in one bag

is higher than in another.

We are especially interested in the case where very little infor-

mation is known: constraints are loose, and specified only for a

small subset of bags. Given this information during training, our

goal is to learn a function f (x) that predicts a label for individ-

ual instances, including instances that do not have an associated

bag. In the following, we discuss the two most common settings –

classification and regression.

2.1 Background: Ballpark Classification
The Ballpark setting was first proposed in [9] for binary classifica-
tion problems. For completeness, we briefly review the classification

setting here. In the next section, we extend the framework to re-
gression problems with new methods and properties.

In the classification setting, label spaceY is discrete,y∗i ∈ {−1, 1}.
Let pk be the proportion of positive-labeled instances in bag Bk :

pk = |{i : i ∈ Bk ,y
∗
i = 1}/|Bk | (1)

(where y∗i is replaced with yi for instances xi ∈ XL).
Importantly, pk is not assumed to be known (unlike related work

on learning from label proportions [18]; see Section 6). Rather, the

model is given weaker prior knowledge, in the form of constraints
on proportions. In [9], constraints included:

• Lower, upper bounds on bag proportions: lk ≤ pk ≤ uk ,
• Differences: lk12

≤ pk1
− pk2

≤ uk12
.

For example, suppose we would like to predict whether a user

is over age 65. We may have a bag of users Bk who often go out

at night (based on GPS readings). From prior socio-demographic

research, we could know that pk is somewhere between lk = 0.1
and uk = 0.3. We may also have knowledge about the difference

between users with high and low outdoor nighttime activity levels.

Our prediction function is f (x) = sign(wTφ(x)), where w is

a weight vector we estimate and φ(·) is a feature map (to simplify

notation bias term b is dropped by assuming a vector 1N+L is

appended to the features). To attain the classification goal, we use a

maximum-margin approach, formulating Ballpark classification as

a bi-convex optimization problem and solving it with an alternating

minimization algorithm. For more details, see [9].

2.2 Ballpark Regression
Many real-world problems of interest involve a continuous target,

which poses a special challenge for crowdsourcing [28]. In this

section, we thus extend the Ballpark setting to regression.

Denote ȳk =

∑
i∈Bk y

∗
i

|Bk | , wherey∗i ∈ R. Similarly to the proportion

constraints in the classification scenario, our constraints are over

the bag averages ȳk . We allow constraints of the following form:

• Lower, upper bounds on bag averages: lk ≤ ȳk ≤ uk ,



• Differences (additive): lk12
≤ ȳk1

− ȳk2
≤ uk12

,

• Differences (multiplicative): lk12
≤ ȳk

1

ȳk
2

≤ uk12
.

We extend [9] and incorporate multiplicative differences, as these

often may be intuitive for crowd workers (see Section 5.1).

Our goal is to predict a target for each xi using a regression
function f (x) = wTφ(x). We directly model the latent variable

y∗ – the vector of unknown labels y∗i ∈ R – in a constrained

optimization problem. Let R be the subset of B for which we have

upper and/or lower bounds. Let D be the set of tuples (Bk1
,Bk2

)
for which we have difference bounds. We formulate the following

convex optimization problem:

argmin

y,w

1

2

wT w +
CN
N

N∑
i=1

| |yi − wTφ(xi ))| |22

+
CL
L

N+L∑
j=N+1

| |yj − wTφ(xj ))| |22

s .t . lk ≤ ˆ̄yk ≤ uk ∀{k : Bk ∈ R}
lk12

≤ ˆ̄yk1
− ˆ̄yk2

≤ uk12
∀{k1 , k2 : (Bk1

,Bk2
) ∈ D}

(2)

where ˆ̄yk =

∑
i∈Bk yi
|Bk | is the estimated mean in bag Bk , lk (or uk )

can be −∞ (+∞) if not given as input, and analogously for differ-

ence bounds lk12
(uk12

); we omit multiplicative difference bounds

for brevity.CN andCL are cost hyperparameters for unlabeled and

labeled instances, respectively. CL controls the weight we give to

labeled instances versus prior knowledge on B.

Importantly, unlike in Ballpark classification, this problem is

convex and thus we are guaranteed to find its global minimum.

We are also able to derive some insights into the regression model.

Problem 2 is quadratic with respect to y, allowing the use of dedi-
cated solvers. Furthermore, we note that with respect to w, we can

write out the minimizer (as function of y) explicitly, as follows.

argmin

w

1

2

wT w +
CN
N

N∑
i=1

| |yi − wTφ(xi ))| |22

+
CL
L

N+L∑
j=N+1

| |yj − wTφ(xj ))| |22

(3)

Denote the solution to Problem 3 as w∗
. As is readily seen, this

is essentially a (weighted) ridge regression problem. In this paper,

we are interested in the case where we have no labels at all. In our

experiments we do not use any labeled instances, thus at this point

we set CL = 0 for ease of exposition, and recover the familiar ridge

solution with closed-form solution w.r.t y, (λI + ΦT Φ)−1ΦT y,
where Φ is the feature matrix for instances {1, . . . ,N } and λ is

a regularization hyperparameter (inversely proportional to CN ).

Now, we can plug the expression for w∗ back into the objective

function, and solve a quadratic program for y:

argmin

y

1

N

N∑
i=1

| |yi − wT
∗ φ(xi ))| |22

s .t . lk ≤ ˆ̄yk ≤ uk ∀{k : Bk ∈ R}
lk12

≤ ˆ̄yk1
− ˆ̄yk2

≤ uk12
∀{k1 , k2 : (Bk1

,Bk2
) ∈ D},

(4)

which yields our final, optimal weight vector w∗. Intuitively, the
first “step” (expressingw∗ w.r.t y) finds a weight vectorw predicting

y, and linear constraints on ˆ̄yk ensure that we find an assignment

to y that satisfies constraints given for bags Bk .
In some cases we may have constraints that apply globally – such

as that yi ≥ 0∀i , or that the global target mean is within a certain

range. These constraints can easily be incorporated by setting the

appropriate Bk (e.g., one bag consisting of the entire training set).

In Section 3, we discuss how to use crowds to build constraints.

Learning as a feasibility problem. We further develop an al-

ternative method for Ballpark regression. Here, we do not opti-

mize for the latent y and w concurrently, but only for w in a feasi-

bility optimization problem. Noting that our quantity of interest

ˆ̄yk =

∑
i∈Bk yi
|Bk | can be modeled as

∑
i∈Bk wT φ(xi)

|Bk | under the standard

linear regression premise that the (conditional) expected value of

the target is a linear function of the input, we solve the following

simple and intuitive convex program:

argmin

w

1

2

wT w +
CL
L

N+L∑
j=N+1

| |yj − wTφ(xj ))| |22

s .t . lk ≤
∑
i ∈Bk wTφ(xi)

|Bk |
≤ uk ∀{k : Bk ∈ R}

lk12
≤

∑
i ∈Bk

1

wTφ(xi)
|Bk1

| −
∑
i ∈Bk

2

wTφ(xi)
|Bk2

| ≤ uk12

∀{k1 , k2 : (Bk1
,Bk2

) ∈ D}

(5)

Thus, in Problem 4 we are essentially finding an assignment ŷ to

y, such that ŷ satisfies bag constraints and is at the same time close

(in l2 norm) to the ordinary (unconstrained) ridge prediction based

on Φ, ŷ. In contrast, in the feasibility problem, we find a regularized

solution w such that predictions themselves satisfy the Ballpark

constraints. The feasibility problem, which does not attempt to find

an assignment ŷ, clearly has less parameters and is thus lighter

and runs blazingly fast in our experiments (less than a second for

all the experiments we describe in the paper). We observed in our

experiments that the two approaches led to similar results (with

a slight advantage to the former that also adjusts y), and thus we

focus on using the solution to Problem 2 for simplicity.
1

PAC formulation and sample complexity bound. We briefly

derive a basic sample complexity bound for Problem 5 using the

general PAC (Probably Approximately Correct) framework. To sim-

plify, we setCL = 0 (no labeled data), and derive a dimension-based

bound rather than norm-based by ignoring regularization term

1

2
wT w. Keeping this term would require some slightly more tech-

nically involved analysis. Our main goal here is just to get some

preliminary and intuitive theoretical grounding of the model.

Lemma 2.1. For w ∈ Rd , and under the modification mentioned
above, Problem 5 can be cast in the general PAC learning model,
and sample complexity mH is bounded by O( dϵ 2

), where H is a
hypothesis class w induces over instances x and bags B, and ϵ follows
the standard PAC notation (see [22]).

Proof sketch.We incorporate the Ballpark constraints into a 0-1

loss function, taking the value 1 when constraints are violated and 0

1
Code and more materials can be found at: https://github.com/ttthhh/ballpark.git

https://github.com/ttthhh/ballpark.git


otherwise. Parameterizing a hypothesis classH over instances and

bags with w, we obtain a PAC formulation. We derive a dimension-

based bound using the practical discretization trick to treatH as

finite, applying corollary 4.6 in [22] to obtain the bound. □

Optimizing hyperparameters. In practice, we need to tune hy-

perparameter CN (λ). This is typically done with cross-validation

(CV) grid search. However, standard CV is impossible here as we

have no labels to compute accuracy on held-out data.

We thus use a variant of CV called Constraint Violation Cross

Validation (CVCV) developed in [9] for the classification case, which

is readily adaptable to regression. We run K-fold CV, splitting each

bag Bk into training and held-out subsets. The intuition is that the

label average in uniformly-sampled subsets of a bag is similar to

ȳk in the entire bag. For each split, we solve Problem 2 on training

bags, and then compute by how much constraints are violated on

held-out bags. More formally, we compute the average deviations

from bounds,max( ˆ̄yk −uk , 0),max(lk − ˆ̄yk , 0) for ˆ̄yk the estimated

label mean in the held-out subset of bag k . We do so over a grid,

and select the CN (λ) with lowest average violation. This simple

approach leads to good hyperparameter selections in practice.

3 BALLPARKWITH CROWD CONSTRAINTS
In the previous sections we presented the Ballpark formulation.

Most importantly, in Ballpark learning we do not assume to be

given labels, but rather weak information in the form of constraints.

A natural question is how we obtain these constraints.

In [9] we assumed that constraints came from experts or some

other source of domain knowledge. It was left as an open question

whether the methods would still be effective using noisy informa-

tion from a crowd of non-experts. Obtaining constraints from the

crowd raises some interesting points which we discuss below.

Constraint aggregation. There are multiple ways to build con-

straints by querying the crowd. Importantly, virtually all of these

methods require aggregation of crowd guesses. A large body of work

in crowdsourcing for machine learning and “wisdom of the crowds”

(WoC) deals with aggregating human guesses [7, 13, 17, 24, 25, 28].

The objective of these methods is typically to obtain accurate point

estimates of some quantity. A simple and popular approach is to

take the mean of guesses, potentially weighted by worker qual-

ity. More elaborate methods construct rich probabilistic models

[7, 25, 28] to capture different worker properties (e.g., systematic

biases). Other methods rely on multiple guesses and incentives

[24] or assume labeled ground truth [28], requiring more resources

and a more taxing experience for workers and practitioners. Impor-

tantly, rather than aiming to obtain a point estimate, in the Ballpark

framework we only require broad intervals “bracketing” the true
label average of bags. Instead of focusing efforts on aggregating

crowd guesses “accurately”, we rely on a machine learning model

to use these intervals and predict accurate individual labels.

Thus, one simple method that is suitable for the Ballpark frame-

work is to elicit crowd guesses on group label averages, and then

construct bag bounds based on percentiles of the empirical guess

distribution (see Section 5). An alternative, less common approach

in WoC is to forgo point estimates altogether and consider the

distribution of all possible values, such as assigning different prob-

abilities to different intervals [8]. In [16] multiple interval guesses

from a crowd are aggregated to improve predictions. Loosely in-

spired by this, we also consider asking people to guess intervals
bracketing label averages in groups and simply take the means of

the upper and lower bounds (see Section 5.3).

Constraint feasibility. In the Ballpark problem formulation we

impose hard constraints on label means. In practice, we may face

certain constraints that are infeasible. This could happen, for exam-

ple, when we receive misspecified lower and upper bounds from

non-experts. As we demonstrate in Section 5.2, constraints can be

made soft by adding slack variables ξ to the infeasible subset.

Tasks Suitable for Crowd Constraints.We believe the intuition

of crowds could be especially useful when trying to learn hidden

behavioral, sociological or commercial attributes. In our experi-

ments, we examine two predictive tasks: Predicting return to jail

(complex behavioral property) and predicting rental prices (com-

mercial intuition). Our method is less suitable for cases where the

bias of crowdworkers is so extreme as to substantially skew even

the lower or upper bounds on label averages. This could be caused

by domain ignorance or deeply ingrained beliefs.

4 EVALUATION (1): SYNTHETIC
CONSTRAINTS

For our first evaluation task, we wish to explore the robustness

of Ballpark Learning to different constraint settings, examine the

effect of constraints on prediction accuracy, and compare Ballpark

to the supervised setting. We create artificial bags based on a real

dataset, varying bag and constraint construction to illustrate some

of the different factors that come into play. As the classification

setting was evaluated in [9], we focus on regression.

Data. The Boston dataset is a well-known, small dataset (506 in-

stances) available from the StatLib repository [26] that is popular

for evaluating regression models. It contains information on Boston

housing characteristics and values. The target variable is the me-

dian value of owner-occupied homes in different areas. Each area

has 13 features, including crime rates, air pollution (nitric oxides

concentration), average number of rooms, and more. We estimate

the prices of apartments using ballpark regression with bags based

on crime levels, pollution, and number of rooms.

Constraints. We construct bags based on only three variables:

crime (CRIM), pollution (NOX), and average number of rooms (RM).

We discretize these variables into three bags each (cutoffs at the

0.33 and 0.66 percentiles). This yields 9 bags, such as B
high crime

,

B
medium crime

, B
low crime

. Next, we compute (true) bag averages,

and construct pairwise constraints based on their partial ordering.

Bounds on bag means are built by introducing a multiplicative error

term multiplying the true bag means (10% in each direction, with

apartment prices measured in units of $1000). If for bag Bk the true

bag mean is ȳk , then upper and lower bounds are (1+ϵ)ȳk , (1−ϵ)ȳk ,
respectively, where ϵ(= 0.1) is the error term for individual bags.

Bounds on bag differences are created in the same way.

We compare our method to supervised ridge regression with an

increasing number of labeled examples, reporting average RMSE

results (over 5-fold CV). Our goal is not to compete with the host

of methods tested on this benchmark, but rather to see how far

we can get using only weak information. As seen in Figure 1(a),

by using weak domain knowledge on bags we are able to either



(a) (b) (c)

Figure 1: (a) Boston accuracy. Ballpark surpasses or rivals ridge regression with a considerable amount of ground-truth labels. As expected,
constraints artificially constructed assuming more prior knowledge, are better than constraints aggregated from crowd guesses (Section 5.2).
(b) Varying multiplicative error term on synthetically-built constraints. (c) Continuing plot (b) for extremely large error terms

surpass or rival ridge regression with a considerable amount of

ground-truth labels. With 300 labels (accounting for ≈ 60% of the

entire data), there is still a considerable gap in RMSE in favor of

ballpark regression. We select regularization hyperparameter with

the CV method described Section 2. Due to the small size of this

dataset, we do so with only 3 inner training folds, which in our

experiments was enough to reach good results.

Sensitivity analysis. We now explore what effect quality of con-

straints has on prediction quality. For the synthetic constraints

described above, we vary the multiplicative factor ϵ , gradually loos-
ening upper and lower bounds on bag means. As seen in Figures

1(b)-(c), at first error grows rather slowly with ϵ , but then picks up

when constraints become broad beyond reason. Indeed, assuming

for instance that a true bag mean is 20K, then ϵ = 0.5 means our up-

per and lower bounds specify the very uncertain range [10K, 30K].
Even with such a broad set of constraints obtained with ϵ = 0.5
we obtain error that is slightly better than using ridge regression

with 100 labels. In real applications, constraints too weak may be

dropped, or more information could be collected to tighten them.

In addition to varying ϵ , we also examine the effect of bag choice.

In Figures 1(b) and 1(c), we show results for using all three bags

(RM+NOX+CRIM), pairs of bags (RM+NOX, RM+CRIM,NOX+CRIM),

and singletons (RM,NOX,CRIM). Results are fairly robust to this

choice but, as expected, using fewer bags overall leads to inferior re-

sults. The gap is more pronounced in the range of relatively tighter

constraints (up to ϵ = 0.2). It is also evident that RM’s (number of

rooms) contribution to informative bag construction is strongest.

Using only this variable for bag construction gives inferior results at

first, but as ϵ grows the performance of RM-only bags rapidly gets

very close to richer bag constructions based on the other variables.

5 EVALUATION (2): CROWDSOURCED
CONSTRAINTS

In the previous section, we evaluated the Ballpark setting with

synthetic constraints. We now set out to discover whether we can

obtain good results when constraints are crowdsourced instead.

In particular, we ask: Can crowds provide good constraints?
We are interested in both efficiency and effectiveness: Can we collect

highly noisy and biased guesses from a crowd of non-experts and

still obtain good instance-level predictions? Can collecting group

constraints require less effort and resources than the standard prac-

tice of collecting individual labels from the crowd? How should we

aggregate crowd guesses to get the best “bang for the buck”?

5.1 Classification with Crowds: Recidivism
We start by focusing on classification problems.

Motivation and data. In the United States, a large share of crime

is committed by inmates released from prison [2]. About two-thirds

of prisoners released across 30 US states in 2005 were re-arrested

within 3 years [15]. Recently, statistical learning methods have

been used for risk assessments attempting to predict the danger an

offender would pose after release [1] to inform sentencing decisions.

We use two datasets with cohorts of inmates released in 1978

(N = 9327) and 1980 (N = 9549) from a North Carolina prison

[21]. The target variable indicates whether an inmate returned

to prison within a year of release. Features include race, gender,

age, alcoholism, serious drug use, supervision after release, marital

status, conviction due to felony/misdemeanor, and more.

Experiment design.We ask Amazon Turk workers to assess the

likelihood of released inmates to return to jail, based on coarse

information on groups. We build “bags" of inmates based on the

following binary variables: gender, alcoholism, drug use, supervi-

sion, marital status, conviction due to felony/misdemeanor, crime

Figure 2: Recidivism AMT task example. Querying crowd workers
for pairwise constraints on bags of instances.



against property/person. For each variable, we have two bags (0, 1).
Workers are asked to determine which bag has higher recidivism

rates, by how much, and guess the rate in one of the bags (See

Figure 2 for an example; more examples are in our code repository).

We ask workers to guess which inmates are more likely to return

to prison (e.g., alcoholics or not) and how much more likely it is.

Workers are also asked to guess the rate of recidivism for groups.

We have 16 groups based on 8 binary variables, but we only ask

for estimates on groups corresponding to “positive” values of each

variable (e.g., MARRIED = 1, MALE = 1). Our AMT task thus

consists of 8 HITs, each corresponding to a feature, assigning 30

US-based workers per HIT, with approval rate greater than 97% and

over 500 approved HITs, for a total cost of $16.80 (including fees).

In all our experiments we also tried downsampling the number of

answers per HIT, retaining robust results.

Constraint construction.Next, we need to aggregate the crowd’s
replies into a set of Ballpark constraints. To construct the partial

ordering P between pairs of bags (such as between B
male
,B

female
),

we take the majority vote, which is unequivocal across all variables

but one (crimes against property). It appears the crowd’s intuition

conforms with “stereotypes” on the relative likelihood of certain

groups to commit crime. To build upper and lower bounds on bag

proportions and differences, we take the 0.75 and 0.25 percentiles of

answers and turn them intomultiplicative constraints (other choices,
such as 0.9, 0.1, led to virtually the same results; see Section 5.3 for

an alternative aggregation method). We upper-bound the global

proportion of recidivism at 0.4, based on the cited statistic above on

general recidivism rates, which is considered common knowledge.

Results.We compare our label-free method to supervised baselines.

These include results previously reported for this prediction task

(1978 inmate cohort), taken from [11], all of which were obtained

using all labels available during training. For the 1978 cohort data,

we use the same train/test splits as the authors. We also include

results we obtained ourselves by training Support Vector Machines

(SVM) with different amounts of labeled examples. We vary the

number of labels given to SVM to demonstrate the effect the amount

of labeled data has, and compare it to our ballpark approach that

uses no labeled instances. For the 1980 data, we report mean cross-

validation accuracy (10 folds). BMP (Biased Minimax Probability

Machine) is a method proposed in [11] for handling imbalanced

classification tasks, reported for the 1978 cohort only.

As seen in Figure 3, our Ballpark method achieves results that

surpass or rival supervised baselines and advanced methods ex-

posed to all true labels, and SVM with an increasing number of

labels. This is despite us not using even one ground-truth label, and

leaving the construction of bag bounds to crowd workers with no

real domain knowledge beyond commonplace intuition.
2

A note on noise and bias.We observe the high amount of noise

in the individual estimates, seen in Figure 4. In this figure, we see

guesses for the percentage of recidivism per group, and for pairwise

(multiplicative) differences between bags. There is large variability

for both the rate of recidivism and group differences, despite giving

workers basic background on the general rate of recidivism.

Note that a related line of work, learning from labels proportions

[18], assumes that true bag proportions are known. They suggest

2
Incidentally, one of the workers emailed us to explain she was a retired correction

officer, and “that is why most, if not all, of my answers were negative”.

Figure 3: Recidivism results. Comparing to baseline methods
reported in [11] (1978 cohort) and trained by us (1980 cohort).
BN=Naive Bayes, DT=Decision Tree, kNN=k-Nearest Neighbors,
BMPML/G= [11] (all using entire labeled data), SVM = Support Vec-
tor Machines trained with an increasing number of labels.

Figure 4: Recidivism AMT worker guesses on (top) bag averages
per group and (bottom) pairwise constraints.

(theoretically) that sampling for bag proportions is one way to

obtain accurate estimates. In practice, sampling for labels from true

domain experts is typically infeasible or costly, while resorting to

crowdsourcing is considered a viable option. However, while noise

can potentially be averaged out, even looking at average estimates

per bag leads to highly biased estimates, with relative errors (with

respect to ground truth) of up to 60%, with most errors ranging

around 30%. These render bag average proportions highly dubious.

By using broad constraints on averages, our methods are able to

exploit crowd estimates and rival supervised methods.

5.2 Regression with Crowds (1): Boston
In our second crowd experiment, we explore Ballpark regression.

We return to the Boston dataset, now using crowdsourced con-

straints. We believe people should find it simpler to compare groups

based on the same variable (e.g., B
medium pollution

,B
low pollution

).



Figure 5: Constraint effects on Boston accuracy. Varying bound
quantile on individual bags bl , bag differences dl , crowdsourced
data. The graph stops abruptly when constraints are infeasible. We
then add slack variables and continue increasing the bounds.

Therefore, we asked crowd workers to determine which bag has

higher average apartment prices and by how much.

To make the Boston dataset relevant in 2017, we formulate ques-

tions referring to a “city somewhere in the world", and give some

basic price statistics for this fictional city (average, minimum and

maximum). Some things never change - common intuition nowa-

days still yields useful constraints, as our results below show.

Our AMT task thus consists of 9 HITs, assigning 30 US-based

workers per HIT, with approval rate greater than 97% and over 500

approved HITs, for a total cost of $18.90 (including fees).

We build pairwise constraints based on (clear-cut) majority votes,

and construct bounds using percentiles of answers (0.75, 0.25 as in

the recidivism task). As seen in Figure 1(a), we are able to surpass su-

pervised regression with many ground-truth labels. Unsurprisingly,

synthetic constraints achieve better results due to stronger prior

knowledge, but the simple bag construction from crowd constraints

in this experiment still yields good results.

Sensitivity analysis. We briefly examine how the tightness of

constraints could affect model performance, illustrating some of the

different factors that come into play and exploring the robustness of

ourmethod.We vary tightness of upper/lower bounds for individual

bags and bag differences, reporting accuracy. We denote the lower

bound percentile for individual bags as bl (e.g., 0.25 as above),

and set the upper bound to 1 − bl . Similarly, dl and 1 − dl are
lower and upper bound percentiles for bag differences. In Figure

5 we observe that after the point bl = 0.25 constraints are no

longer feasible, indicating badly-specified bounds. At this point we

add slack variables as discussed in Section 3. The error continues

to slightly drop, and then picks up when bounds are extremely

loose. In the next section we show an alternative way to query

crowdworkers for constraints without selecting bl , dl . Nonetheless,
we note that even with the worst choices for parameter bl our error
is still better than supervised ridge regression with 200 labels. For

parameter dl , results are even more robust.

5.3 Regression with Crowds (2): Airbnb
In this section we continue to compare the standard practice of

collecting labels to our suggested practice of collecting group con-

straints. We also explore another simple way to obtain constraints,

asking workers to guess intervals directly.

Data. In this experiment we predict apartment prices again using a

bigger, more modern apartment dataset. We hope workers have bet-

ter intuition on apartment prices for this dataset due to its intuitive

features and recency, making the evaluation more fair.

Airbnb is an online marketplace enabling people to lease or rent

short-term lodging. The dataset (insideairbnb.com) consists of 5147

apartments. Our aim is to predict the price a user will enter for

an apartment in Chicago in Early October 2015, based on features

such as neighborhood, number of beds, amenities, and more.

Experiment design. We collect judgments via two separate tasks.

First, we construct bags of apartments based solely on amenities.We

look at whether or not an apartment has a TV, a fireplace, a building
doorman and building gym. As in the Boston experiment, we build

pairwise constraints based on majority votes by crowd workers, ask

workers to guess the price difference, and construct bounds using

answer percentiles. We give basic statistics on the distribution of

prices in the data (average, top and bottom 5 percentiles). Our AMT

task thus consists of 4 HITs, assigning 30 US-based workers per

HIT, with approval rate greater than 97% and over 500 approved

HITs, for a total cost of $3.6 (including fees).

Aside from collecting guesses on bags, we also collect hundreds

of guesses on individual instances, a standard practice for collecting
labeled data via crowdsourcing. We test the hypothesis that people

are (often) better at reasoning about simple groups of instances

and the pairwise ordering/relation between them, rather than about

individual instances with possibly high-dimensional characteristics.

We run a parallel experiment asking workers to guess prices of

400 flats, based on the full set of features our method is trained on.

We assign one US-based worker per HIT, with approval rate greater

than 97% and over 500 approved HITs, for a total of $12 (including

fees), 333% higher than collecting ballpark group guesses.

As we show below, the individual crowd estimations are not suffi-

cient for training a good regression model. However, using guesses

on groups in our ballpark methods achieves results comparable to

a regression model based on true apartment prices.

Aggregating crowd guesses of intervals. In the above design,

we asked workers to guess apartment prices and used percentiles

of answers as bounds. While this worked well in practice, we seek

an aggregation requiring less intervention by the practitioner.

As discussed in Section 3, another approach is to have the crowd

directly guess intervals. Thus, in a separate experiment we ask

people to guess lower and upper limits bracketing bag averages.

To construct our constraints we then simply take the means of the

upper and lower bounds, respectively. We formulate the task in

simple language and encourage workers to take into account their

uncertainty (“feel free to give a wide range if you are not sure”).

Results and robustness to outliers. In many real-world settings,

data is often “contaminated” with observations that have outlier

target values. In our data set, there is a small portion of apartments

with very high prices in comparison to the rest (about 0.5 percent of
apartments are priced over $1000). These outlier apartments raise

several points of interest. Unsurprisingly, people are not good at

guessing the prices of outlier flats, rendering the labels particularly

off-mark. More importantly, we find that while ridge regression

suffers a considerable drop in accuracy due to these observations,

our method is naturally robust since the crowd’s guesses on groups
inherently disregard extreme, non-representative behaviors.

insideairbnb.com


Figure 6: Airbnb results. Ballpark I denotes percentile aggregation
of guesses, Ballpark II denotes eliciting interval predictions. Ridge
regression is trained with an increasing number of labels. Ridge
with 400 individual labels from crowd guesses performs poorly, as
opposed to using constraints on groups in our Ballpark framework,
or training ridge on the same 400 instances with true labels. Similar
results hold for the RANSAC and Huber robust regression models.

We compare our label-free method to ridge regression with a

different number of true labels, and also to ridge using 400 labels

obtained from workers. To handle outliers, we use the Mean Abso-

lute Error (MAE) metric rather than RMSE in 10-fold CV (so that

the unit of error is in dollars). We compare results running on the

entire data, and removing all instances with prices over $1000.

As seen in Figure 6, ourmethod achievesMAE results comparable

to ridge regression with a large number of true labels. While outliers

cause a big increase in error for ridge regression with 100 labels,

our method remains nearly unaffected. Our method is able to near

results reached with robust regression models (RANSAC [5], Huber

regression [12]) trained on ground-truth labels.

To further test the effect of outliers and the possibility that the

poor baseline ridge results are due to a few large errors, we train

RANSAC and Huber regression with the 400 crowd labels. These

methods manage to only slightly reduce error, showing that while

outliers have some effect, the overall quality of crowd labels is the

key source of error, which our bag-based method is able to avoid.

Interestingly, both constraint aggregation approaches – using

percentiles (Ballpark I in in Figure 6) and eliciting interval predic-

tions directly (Ballpark II) – lead to nearly identical results, the

latter being more hands-off. We also see that ridge regression with

400 crowd-acquired labels does rather poorly, although it does well

for the exact same instances when their true labels are given.

6 RELATEDWORK
Crowdsourcing for machine learning. There is a large body of

work about the use of crowdsourcing for machine learning, primar-

ily regarding label collection. In Section 3 we reviewed the most

relevant work. The main focus in that field is acquiring discrete
labels for classification. Getting accurate labels typically requires

a lot of resources: multiple queries, worker reputation, and prob-

abilistic models of worker patterns (e.g., biases). Our approach is

different: First, we exploit the natural human tendency for intuiting

on groups and the tendency for comparisons. Second, instead of

focusing resources on aggregating crowd guesses accurately, we

leverage a machine learning model based on rough intervals brack-

eting label averages, to accurately predict individual labels with few
resources. In addition, we handle regression and continuous targets,

which is notoriously hard for crowds and has not seen much work.

Related learning settings. The field ofMultiple Instance Learning
(MIL) is concerned with “bags" of instances, where each bag has

a label associated with it. This label is modeled as a function of

latent instance-level labels, which can be seen as a form of weak

supervision. MIL methods vary by the assumptions made on this

function [3, 6]. Most work in MIL focuses on making bag-level

predictions rather than for individual instances. In a related line

of work, Learning from Label Proportions, individual labels are

predicted based on known label proportions for bags [18, 20, 29]. In

[20], each bag is represented with its mean, showing superior per-

formance over [18]. In [29], individual labels are explicitly modeled

to counter problems with representing bags by their means (such

as high variance). These approaches all assume bag proportions are

known, an assumption Ballpark Learning relaxes.

To the best of our knowledge, the subject of continuous labels and

regression is not discussed in this literature, let alone demonstrated

on data (simulated or real). In [18] the authors mention that their

framework could apply, in theory, to continuous label spaces, but

their methods assume a discrete label space to be able to reconstruct

class probabilities efficiently.

7 CONCLUSION AND FUTUREWORK
In this work we proposed a new method that can complement

standard crowdsourcing practices when traditional labeling is dif-

ficult. People often have intuition about groups of instances and

relations between them, while labeling individual instances is hard.

Our framework takes advantage of this phenomenon, leveraging

a recent machine learning setting called Ballpark Learning based

on weak, noisy constraints over groups of instances. We extended

Ballpark Learning to handle the useful case of continuous out-

puts, formulating a convex program with a simple solution. Across

several real datasets, we harness constraints from a crowd of non-

experts and use them to train learning models. Our results rival

supervised models that use many true labels, at a much lower cost.

In practice it may be unclear how to construct useful bags. Inter-

esting future work is using crowdworkers to select and build bags

themselves, perhaps giving them a GUI to explore slices of the data.

Deriving a deeper theoretical analysis of our models is also in-

teresting. For example, understanding what makes bags “useful” in

terms of the signal they provide, depending on factors such as their

size and dispersion. The Ballpark approach can also potentially

be combined with deep learning models (typically requiring many

labels) as a form of weak supervision. We believe our lightweight

methods pose an interesting alternative to current labeling practices,

and could be particularly useful when data is high-dimensional and

unintuitive for crowds, when privacy concerns prevent showing

individual examples, and when resources are limited.
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