
This paper was selected by a process of
anonymous peer reviewing for presentation at

COMMONSENSE 2007

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007,
Stanford University, California

Further information, including follow-up notes for some of the
selected papers, can be found at:

www.ucl.ac.uk/commonsense07

Towards a Theory of AI Completeness

Dafna Shahaf and Eyal Amir
Computer Science Department

University of Illinois, Urbana-Champaign
Urbana, IL 61801, USA
{dshahaf2,eyal}@uiuc.edu

Abstract

In this paper we present a novel classification of compu-
tational problems. Motivated by a theoretical investigation
of Artificial Intelligence (AI), we present (1) a complexity
model for computational problems that includes a human in
the process, and (2) a classification of prototypical problems
treated in the AI literature. The contribution of this paper is
useful for automatically distinguishing between human and
computer users. Also, this work serves as a formal basis
for investigation of problems that researchers treat as hard AI
problems. Most importantly, this work allows progress in AI
as a field to be more measurable, instead of measurable with
respect to problem-specific quantities.

1 Introduction
Many problems that appear easy for humans are difficult for
computers. Difficulty for computers is either in computa-
tional terms (time or space required) or in having no known
solution at all. For example, we know how to solve plan-
ning, but the solution is intractable in general; other prob-
lems, such as vision and natural language understanding, we
do not know how to solve with a computer.

For this reason, some recent systems harness the compu-
tational power ofpeople: Interactive Evolutionary Compu-
tation (Takagi 2001) uses human judgment to evaluate solu-
tions, thus allowing us to address problems with no formal
model developed, like beauty or creativity. The Cypher-
mint.com PayCash system identifies its clients by taking
their picture and sending it to a human worker. Online
games recently developed (von Ahn 2006) use people to la-
bel images over the web, label parts of images, and generate
commonsense facts.

Other systems, like CAPTCHA (von Ahnet al. 2003),
utilize the same idea to tell humans and computers apart.
The user proves he is human by answering a question that is
hard for computers and not for people. This kind of system
is used successfully to block spammer bots.

Current computational models help analyzing and classi-
fying computational problems from the perspective of time
and space taken by a computer. However, many problems of
interest to researchers in artificial intelligence escape such

Copyright © 2007, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

analysis, and are hard to classify or investigate formally.
Furthermore, current Computer Science theory does not ad-
dress problems from the perspective of difficulty for com-
puters or difficulty for AI researchers to solve.

This paper presents the foundations of a theory of compu-
tation that can help analyze problems of interest to AI re-
searchers. In particular, we present a new computational
model, Human-Assisted Turing Machine (HTM). In this
model, a Turing machine (TM) can access a human oracle
– a black-box machine that can decide problems that hu-
mans solve. We are inspired by the introduction of oracle
machines to the TM framework, and its effect on Compu-
tational Complexity theory. By reasoning about worlds in
which certain actions are free, oracles enabled a deeper un-
derstanding of the relationship between complexity classes.
Similarly, we hope that reasoning about worlds in which hu-
mans can help Turing Machines can lead to new insights
about AI problems.

We present several alternative formal definitions of hu-
man oracles, varying in their computational abilities, error
rates, and utilities. We also define complexity measures,
which are used to analyze complexity of problems in our
model. Those measures examine ways in which computa-
tional workload can be split between the computer and the
human oracle: our intuition is that a problem is hard if we
cannot solve it without having the human perform a substan-
tial part of the computation. Those measures can also tell us
how much of the problem we already managed to delegate to
a computer; using reductions, progress in one problem can
translate to progress in another.

We analyze several AI problems in this framework, and
show how the choice of a human oracle model and com-
plexity measures affects the algorithm design and complex-
ity. Our analysis of traditional AI problem shows that Op-
tical Character Recognition (OCR) of printed text is easy,
linear classification requires only poly-log help from a hu-
man (even if he makes mistakes), and the Turing Test is
only quadratically harder when the human oracle is not fixed
throughout the test. We also observe that commonsense
planning is at least as hard as the Turing Test and Image
Labeling.

The main contribution of this paper is formalizing the
complexity of problems that involve parts we do not know
how to solve or formalize, and for which we need humans.

We believe that a complexity theory for AI can give a deeper
understanding of the structure of problems. It can provide
insights about the sources of difficulty, and direct the search
for efficient solutions. This investigation can also lead to a
set of problems that one can use to distinguish computers
from humans; this will provide a precise mathematical def-
inition of problems that one could have proposed instead of
the Turing Test.

2 Human-Assisted Turing Machines
We are interested in problems that are easy for humans and
hard for computers. We can help computers solve such prob-
lems by allowing them to interact with humans. In this sec-
tion we examine ways in which computation can be split
between humans and computers. Our new model enables
such split and contributes to a theory of (AI-)hardness of
problems.

Definition 2.1 (Human-Assisted Turing Machine) Let H
be an oracle machine, representing a human (an oracle is a
black box which is able to decide certain problems (Turing
1938); this is an abstract machine used in complexity theory
and computability theory). A formal definition of this ma-
chine will follow in Section 3.1. A Human-Assisted Turing
Machine (HTM)MH is a Turing machine (TM) with access
to the oracleH.

1 1 0 1 0 0

1 0 0 1

Figure 1: Human-Assisted Turing Machine

The Turing machine has two tapes, one for its computation
and another for the human oracle. It can write on the second
tape an input for the oracle, then tell the oracle to execute.
The oracle computes a function, erases its input, and writes
its output to the tape (see Figure 1). Oracles are usually
assumed to perform their computation in a single step, but
some of our models may assume differently.

Before we define complexity formally, let us start with an
example. Consider the following problem: we are givenn
randomly drawn samples that we need to classify. We know
the classifiers are simple threshold functions,hw(x) = 1 if
x > w, and 0 otherwise (withw depending on the input).
Assume we do not knoww, but a human can classify the
data correctly.

Figure 2 shows two algorithms in the HTM framework.
Classify1simply gives a person all data to classify. Assum-

PROCEDUREClassify1(H, S)
H a human,S a vector of samples
1: for i= 1 to |S| do
2: lbl:= H.GetLabel(S(i))
3: Label(S(i),lbl)
4: return labeledS

PROCEDUREClassify2(H, S)
H a human,S a vector of samples
1: HeapSort(S) //Sort Samples
2: left:= 1 , right:=|S| , mid := floor((left+right)/2)
3: lblLeft:= H.GetLabel(S(0))
4: while left < right do //Binary Search
5: mid := floor((left+right)/2)
6: lbl := H.GetLabel(S(mid))
7: if lbl == lblLeft then left := mid+1elseright := mid-1
8: Label(S(mid),lbl)
9: Label(S(1 ... mid-1),lblLeft)

10: Label(S(mid+1 ... |S|),¬lblLeft)
11: return labeledS

Figure 2:Classification Algorithms with human intervention.

ing the person takes constant time to answer, this results in
anO(n)-time algorithm, and the person sees alln samples.

Classify2is based on theActive Learningparadigm: note
that if we lay these points down on the line, their hidden
labels are a sequence of 0’s followed by a sequence of 1’s.
Our goal is to discover the pointw at which the transition
occurs. Classify2sorts the samples and performs a simple
binary search, which asks the human for justlog n labels.
This algorithm takesO(n log n) time, but relies much less
on the human. Assuming people are more expensive than
computers, this is an improvement.

It seems there is a trade-off between the workload of the
human and that of the computer. In the following sections,
we develop methods to decide which algorithm is better.

2.1 Complexity in the HTM Model
A complexity measure (based on Blum’s definition (Blum
1967)) is a functionφ mapping human-assisted Turing ma-
chinesMH andw input to non-negative integers. It has to
satisfy the following two axioms:

1. φ(MH , w) is defined if and only ifMH terminates onw
2. GivenMH , w, k, it is decidable whetherφ(MH , w) = k.

Time and space are two examples of complexity measures
for computations. For notational convenience, we define
φ(MH) as a function of inputw

φ(MH)(w) := φ(MH , w)

A complexity model is a tuple〈MH,ΦH ,ΦM ,≺ 〉. MH

is a set of HTMs.ΦH is a vector of complexity measures,
representing the complexity of the human oracle (that is, it
depends only on the oracle tape). Similarly,ΦM is a vector
of complexity measures, representing the complexity of the
Turing machine. The vectors can be of any positive length.
≺ is an ordering overΦH × ΦM , human-machine com-

plexity pairs.

Definition 2.2 (Algorithm Complexity) The complexity of
executing an algorithm with machineMH is a pair
〈ΦH(MH),ΦM (MH)〉. The first element represents the
complexity of the human’s part of the work, and the second
– of the machine’s part.

In other words, the pair represents the way the work is
split between the person and the computer. For example, the
complexity measures can be the usual time-space measures;
several others are presented in Section 3.2.

Definition 2.3 (Problem Complexity) A problemL is of
complexityC if there is an algorithm of complexityC that
decides it. We are mostly interested in the minimal complex-
ity (according to≺)

min{〈ΦH(MH),ΦM (MH)〉 | MH decides L}

For partial ≺, this is the set of minimal pairs.

This set represents the trade-off between humans and
computers in solving the problem. Using differentφ func-
tions and≺ relations, we can define many interesting com-
plexity measures.

For example, letΦH ,ΦM be time complexities, and
〈ΦH ,ΦM 〉 ≺ 〈Φ′

H ,Φ′
M 〉 iff ΦH + ΦM < Φ′

H + Φ′
M . This

gives the minimum total time to decideL.
Using differentΦ′s,≺ we can define thehumannessof an

algorithm, that is how much of the computational burden it
takes from the human. A possible definition would be the
minimal amount of help from a human that allows a com-
puter to solve the problem easily (poly-time).

Example 2.4 Let us take a closer look at the classifying al-
gorithms of Figure 2. LetΦH ,ΦM be the time complexities
of the human and the machine, respectively. We are inter-
ested in the minimal amount of human-time needed to allow
poly-time for the TM (this always exists, since the TM can
simply give the human all input). Formally,≺ is defined as

〈ΦH ,ΦM 〉 ≺ 〈Φ′
H ,Φ′

M 〉 iff ΦM is poly-time andΦ′
M

is not, or both are poly-time andΦH < Φ′
H .

In Classify1, the person sees all of the input, and takes
O(n) time to label it. InClassify2, a Turing machine can do
O(n log n) of the work (sorting the samples and querying
the person). The person will see onlylog n of the data, and
will need onlyO(log n) time to label it.

The algorithms’ complexities are〈O(n), O(n)〉 and
〈O(log n), O(n log n)〉, respectively. The classifyingprob-
lemhas complexity

min{〈O(n), O(n)〉, 〈O(log n), O(n log n)〉}
= 〈O(log n), O(n log n)〉

This can later be compared to other problems.

Note that if, for example, we allow a universal TM and
intelligence is mechanizable (humans are at most polynomi-
ally faster than TMs) then the hierarchy collapses, as human
work can be taken over with only a polynomial increase in
the cost. For this reason, it may be interesting to restrict the
kind of TMs that can be used in our models.

3 A Closer Look into the Model
In previous sections, we gave the high-level description of
the HTM framework. However, no formal definition of the
human oracles was given. In this section we present sev-
eral alternative human models (3.1), along with some useful
complexity measures (3.2); we later show how the choice of
a model affects the complexity and the algorithm design.

3.1 Alternative Human Models
Oracle A human is an oracle machine that can decide a set

of languagesLi in constant time:

H ⊆ {Li | Li ⊆ Σ∗}.

Oracle With Time Complexity A human is a machine that
can decide a set of languagesLi. Unlike the oracle model,
answering a query might take more than a constant time.

H ⊆ {〈Li, fi〉 | Li ⊆ Σ∗, fi : N → N}.

fi is the time-complexity function for languageLi: the
human can decide ifx ∈ Li in fi(|x|) time. Alternatively,
we can definefi on the input itself, not its length.

Probabilistic Model So far we have assumed an idealized
human, always giving the correct answer. A more realistic
model relaxes this assumption: a human is modeled as

H ⊆ {〈Li, pi〉 | Li ⊆ Σ∗, 0 ≤ pi ≤ 1}.

That is, a human can function as an oracle to languageLi,
but each of its answers is true only with probabilityp. We
assume the answers are independent; this is like asking a
different person each question.

Utility Some human tasks require considerably more skills
than others. For example, translating from French to
Navajo can be done by very few, and perhaps requires
a joint effort of several people. The previous models did
not capture this notion.
When dealing with real humans, the question of utility
arises. Humans need to benefit from participating in the
algorithm, for example by being paid. One can also make
the algorithm enjoyable for humans, e.g. a game (von
Ahn 2006). In this model, a human is a machine that can
decide a set of languagesLi. .

H ⊆ {〈Li, ui〉 | Li ⊆ Σ∗, ui : N → N}.

ui is the utility function for languageLi: the human can
decide ifx ∈ Li, and he requiresui(|x|) utility. This can
be used to design algorithms with a limited budget.

PersistenceThe previous models assumed independence
between the different answers ofH. In practice, how-
ever, sometimes the same person answers all the queries.
This is similar to the notions of Persistent Oracles and In-
teractive Proof Systems.
This model has some drawbacks. For example, algo-
rithms for the probabilistic case may become useless (e.g.
the classifying algorithm in Section 5); repeating a query
multiple times cannot change the answer. However, we
can sometimes take advantage of it: when trying to han-
dle a conversation (Turing Test) with the help of a single

 a b c

 a b c

Figure 3: Finding a Chair

person, we do not need to send him the conversation his-
tory with every query.

Combinations of those models can also be used. E.g., we
can have a probabilistic model with utilities.

3.2 Measures of Human Effort

Complexity measures for TMs are well-studied. We pro-
ceed to propose a few interesting measures for the human
part of the computation; those will later help us measure the
humanness of algorithms. Note that we usually assume ran-
dom access (also for the TM).

Human Time, Space, Utility The most natural measure is
probably the time complexity. In the Oracle model, this is
equivalent to the number of calls; in the time-complexity
model, this takes into account the human’s complexity
functions,fi. Other measure might involve utilities, and
perhaps even space.

Human Input Size Estimating the size of the input the per-
son handles; the intuition behind this measure is that if a
person needs to read almost all of the original input, the
algorithm probably does not take the burden from him. In
the oracle model, this is the total size of queries.

Information The previous measure suffers from some lim-
itations. E.g., the TM could zip the input to the person (so
he unzips and answers); this results in a smaller human-
input size, but it is nevertheless not an improvement. In
order to avoid those considerations, we propose an alter-
native information-theoretic definition, information gain:
IG(I|HI) is the average number of bits the person needs in
order to know the original inputI when given inputHI.

To see the difference between the last two measures, con-
sider the vision problem of finding a chair. This is a function
problem: the input is a picture, and the user needs to find a
chair in it (see Figure 3a). An algorithmB reduces the reso-
lution of the image (3b) and queries a person, while another
algorithm,C, queries the user with a small region where it
believes a chair is (3c). In this example, images 3b and 3c
are of exactly the same size. Therefore, the human-input
measure would consider the algorithms equivalent. How-
ever, our intuition is that the algorithmC is much better, and
saves the person a lot of work. The Information measure
captures this: the person can reconstruct most of 3a from
3b, and not from 3c.

Note that when dealing with humans, our measures do not
have to make complexity-theory assumptions (e.g., neglect-
ing constant factors, concentrating on worst-case behavior).

3.3 In Practice
So far we assumed that a model ofH is given to us, includ-
ing the languages that humans can decide, the probability of
success, and utilities. We now discuss ways to obtain this
model in practice.

Empirical Evaluation A simple method is to collect statis-
tics for any languageL that humans can decide.

Canonical Actions (Brown & Hellerstein 2004) define a
set of canonical actions that users can take (such as select-
ing a feature or entering a variable) and build a complex-
ity model for each of them. The resulting model is used to
evaluate any algorithm that interacts with humans through
those actions. We can take a similar approach, defining a
set of building-block actions and evaluating them empiri-
cally. The difficulty here is defining those actions.

Individual Tests an interesting question arises when the
problem requires a skill level that varies considerably
among people, such as translation. In this case, perhaps a
general model of humans is not enough; instead, we can
test every candidate. Only after we establish some esti-
mate of his abilities can we use his answers to the real
queries. Note that this requires algorithms that do not
know in advance the exact human model, but rather need
to be able to use the humans that are available to them.

When evaluating a person, one must also take into consid-
eration malicious users. Those users can score high on their
tests and provide good answers for a long time, only to trick
the system into believing their answers and later manipulate
it. (Gentry, Ramzan, & Stubblebine 2005) show that for this
reason (among others), a simple majority vote can be better
than Bayesian inference in the presence of adversaries.

4 Extensions and Complexity Classes
So far, we discussed mainlyDeterministic Machines. Many
extensions can be made, and complexity classes can be de-
fined. We denote byCH a complexity class in the HTM
framework that is similar to classC in the TM framework.
Complements are defined as usual:coCH is the class of
problems whose complement is inCH.

Non-Deterministic Machines A non-deterministic HTM
accepts an input if an accepting state is reachable. For
example,NPH – decision problems which can be veri-
fied by a deterministic HTM in poly-time. We believe the
commonsense-planning decision problem is inNPH – a
person might not be able to solve it in poly-time (in the
input and solution length), but he can verify a solution.

Interactive Proof Systems In those systems, an all-
powerful prover interacts with a verifier. Messages are
sent between them until the verifier is convinced that
he knows the answer to the problem; both the cases of
a human prover and a human verifier are interesting.
The Turing Test can be formalized as an interac-
tive proof system (see (Bradford & Wollowski 1995;
Shieber 2006), although this is another framework).

Parallel and Distributed Computation Using two or
more machines and humans to accomplish a common

task is one of the most interesting directions, and is the
basis to many human-in-the-loop systems nowadays,
such as Wikipedia and Collaborative Spam Filtering. It is
also useful in coping with human mistakes.

This direction is related to many important fields, such
as decision theory, game theory and cryptography. It
raises interesting questions – e.g., it might be non-trivial
to break the problem down, and to combine the solutions
later. Problems like natural-text generation are difficult
in this sense: a text generated in pieces in not likely to
be very coherent. Even sorting becomes complicated to
distribute when the criteria is subjective, e.g. aesthetic.

Furthermore, since many of those systems are online ser-
vices, and the users are often unknown, the issue of trust
becomes crucial. See (Gentry, Ramzan, & Stubblebine
2005) for more details.

Function Problems Unlike decision problems, which have
a Yes/No answer, Function Problems can have complex
answers. This seems to be natural to many problems that
humans can solve.FPH – function problems that can be
solved by a deterministic HTM in poly-time. Note that
while function problems are equivalent to decision prob-
lems in terms of computability, they do not necessarily
have the same complexity.

Many other paradigms can be extended to our framework,
e.g. Randomized, Approximation, and Online Computation
(the same way Genetic algorithms are extended to Interac-
tive Genetic Algorithms). Note that many relations between
complexity classes continue to hold in our framework, e.g.

PH⊆NPH, coNPH
NPH, BPPH ⊆MAH ⊆AMH (Arthur-Merlin protocols)

4.1 Reductions

For decision problems,A1 is R-reducible toA2 means that
there is a deterministic reduction algorithm in complexity
classR, which transforms instancesa1 ∈ A1 into instances
a2 ∈ A2, such that the answer toa2 is YES iff the answer
to a1 is YES. A more general notion, applying also to func-
tion problems, requires an oracle machine that computes the
characteristic function ofA1 when run with oracleA2.

For example, the problem of participating in a Turing
Test (pretending to be human and convincing the judge)
can be reduced to the problem of judging a Turing Test
(telling if the other party is a computer). The problem of
Natural Language Understanding (NLU) can be reduced to
Speech Understanding using text-to-speech tools (or to Vi-
sion’s Scene Understanding, via text-to-image tools). Since
text-to-speech is not considered very complicated, we say
that Speech Understanding is at least as hard as NLU.

Formally, if problemL can be reduced to problemL′

using R of complexity 〈ΦH ,ΦM 〉, R’s output is of size
m = f(n) andL′ of complexity〈Φ′

H ,Φ′
M 〉, then

L is of complexity〈ΦH(n)+Φ′
H(m),ΦM (n)+Φ′

M (m)〉.
The definition of reduction should prove helpful to define
notions of completeness.

5 Examples: Analyzing AI Problems
In this section we analyze several problems using the HTM
framework (see Figure 4). We use the complexity measures
and≺ defined in Example 2.4.

Classifying Refer again to the classification problem in
Section 2. We know the classifiers are simple thresholding
functions, but not the threshold. We are givenn samples that
a human can classify correctly. The algorithms in Figure 2
are for the Oracle model, and take time〈O(n), O(n)〉 and
〈O(log n), O(n log n)〉, respectively (Example 2.4).

Switching to the time-complexity model, assume that
the person needsO(m2) time to classify a sample of size
m, and we are givenn such samples (total input size
nm). The algorithms then take〈O(nm2), O(nm)〉, 〈O(m2 ·
log(n)), O(mn log n)〉 time, respectively. The human’s
time complexity is just the number of queries timesO(m2).
The TM needs to sort the input, query the oracle withlog n
samples, each of sizem, and then label each sample.

What about the probabilistic model? Assume that the per-
son can classify the instances with probabilityp, and we re-
quire reliability level0 < r < 1. The algorithms for the
previous models do not guarantee us this reliability in gen-
eral. However, for anyp 6=½ and a fixedr we can solve the
problem with onlyO(log2(n)) queries to the human.

PROOFSKETCH: The idea is to ask onlylog n questions,
but to repeat each one of them until we are sure of the an-
swer with at leastr1/ log n reliability. LetEm be the number
of errors in the firstm answers; this is a binomial random
variable. Wlgp >½ (otherwise negate the answers). Apply-
ing Chebyshev inequality,
∀ε > 0. P (|Em

m − (1− p)| < ε) ≥ 1− p(1−p)
(mε2)

Let 0 < ε < p−½:
P (Em

m <½) ≥ P (Em

m − (1− p) < ε) ≥
P (|Em

m − (1− p)| < ε) ≥ 1− p(1−p)
(mε2) = 1−O(1

m)
Therefore, we can use majority vote form big enough.

To ensure reliabilityr1/ log n, we needm such that[1 −
O(1

m)]log n > r. Since[1 − 1
a log n]log n → e−1/a, there

is a constantb such thatb log n times suffice.

OCR Optical character recognition (OCR) is computer
software designed to translate images of handwritten or
typewritten text (usually captured by a scanner) into
machine-editable text. Several new approaches in OCR are
cooperative approaches, where computers assist humans and
vice-versa. Computer image processing techniques can as-
sist humans in reading extremely difficult texts.

Assume that we receive an image of a printed text. We
also assume that the page(s) are all in the same font and ori-
entation. A human can look at the first sentence, and supply
valuable information to the TM: the orientation of the page,
and the letters in that sentence. The TM should proceed with
the OCR process, based on this knowledge: whenever it en-
counters a new symbol, it can ask the person for help. Since
the number of symbols is small, the person should takeO(1)
time to answer them all. The complexity of the problem is
likely to be 〈O(1), poly(n)〉. It seems like this problem is
easier, from the AI perspective, than the previous one.

Problem Complexity
OCR, Printed Text Oracle Model:〈O(1), poly(n)〉
Turing Test Oracle Model:〈O(n), O(n2)〉, Linear Read Time:〈O(n2), O(n2)〉, Persistent:〈O(n), O(n)〉
Classifying Oracle:〈O(n), O(n)〉 , 〈O(log n), O(n log n)〉, Errorp 6=½: 〈O(log2 n), O(n log n)〉
(n samples) Quadratic Oracle, sample sizem: 〈O(nm2), O(nm)〉, 〈O(m2 · log(n)), O(mn log n)〉
Image Labeling O(n, n) . Arthur-Merlin game for labeling image parts.

Figure 4: Analyzing AI Algorithms in the HTM Framework – Sample Results

Turing Test In the Persistent Oracle model, we can sim-
ply toss each question to the human, and return his reply:
ann-sentence conversation has complexity〈O(n), O(n)〉 (n
queries). If the oracle is not persistent, however, we have to
send the person the whole conversation history every time,
resulting in〈O(n), O(n2)〉. If the person takes linear time
to read the query, we get〈O(n2), O(n2)〉.

As noted earlier, the Turing Test can also be formalized as
an interactive proof system (and as an instance of common-
sense planning, we suspect). We furthermore believe that
this is one of the hardest AI problems, in a sense that every-
thing can be reduced to it: for any problem humans solve
easily, we can create anO(1)-description of the question,
and send it along with the input to an Extended-Turing-Test
machine (non-textual input); the reply should be correct.
The ESP Game The ESP Game (von Ahn 2006) is an
online game, using people to determine the contents of im-
ages by providing meaningful labels for them. The game is
played by two randomly chosen partners, who cannot com-
municate. They both see an image; from the player’s per-
spective, the goal is to guess what the partner is typing for
the image (with no a-priori constraints).

This can be interpreted as a simple majority-vote classi-
fication algorithm, with humans as experts. More formally,
each game is a Turing machine with two persistent Human
oracles, who do not have access to each other’s tapes. The
Turing machine then queries them, by writing an image on
their input tapes, and receives back their answers. Image
labeling has more than one correct answer, so we apply ma-
jority voting to each of their possible answers: sincek = 2
(number of experts), this means taking only answers they
both agreed on. Forn images (assuming a fixed maximal
image size and number of answers), we get〈O(n), O(n)〉.
Peekaboom The game of Peekaboom (von Ahn 2006) is
slightly more complicated. Again, this is an online game
for two players. One of the players is given an image and
a label, which describes a part of the image (e.g., a hat that
somebody wears). The player can then send the other player
a part of the original image, hoping he would recognize the
label. From the second player’s point of view, this is similar
to the ESP Game: he is given an image, and needs to provide
a label that agrees with the label of the other player.

This can be thought of as a Arthur-Merlin game (an In-
teractive Proof protocol), where Arthur is a polynomial ma-
chine with access to a human. Arthur sends Merlin the query
”is there a part in imageI that can be labeled withl”? If
Merlin answers ”no”, we know he is lying (assuming we
believe the labeling source that providedl). Otherwise, he

sends back a part of the picture as a proof. Arthur then uses
a human to see if this part really is labeled withl.

6 Conclusions
In this paper we proposed a new model of computation,
which includes a human in the loop. This model leads to
a novel classification of computational problems, based on
the way the work can be split between a human and a com-
puter – that is, how much of the computational burden is
delegated to the computer; this classification is suited for a
theoretical investigation of AI.

We discussed several models of a human, differing in their
time-complexity, error and utility models. We also sug-
gested several interesting complexity measures. We then
analyzed AI-problems with those tools, and showed how
the chosen model affected the algorithm design and overall
complexity.

The contribution of this paper is formalizing the complex-
ity of problems that involve parts we do not know how to
solve or formalize. This work will serve as a formal basis
for investigation of the hardness of AI problems; it can also
be useful to generate tests that automatically distinguish be-
tween humans and computers.

References
Blum, M. 1967. A machine-independent theory of the complexity
of recursive functions.J. ACM14(2):322–336.

Bradford, P. G., and Wollowski, M. 1995. A formalization of the
turing test.SIGART Bulletin6(4):3–10.

Brown, A. B., and Hellerstein, J. L. 2004. An approach to bench-
marking configuration complexity. InEW11: Proceedings of the
11th workshop on ACM SIGOPS European workshop: beyond the
PC, 18. NY, USA.

Gentry, C.; Ramzan, Z.; and Stubblebine, S. 2005. Secure dis-
tributed human computation. InEC ’05: Proceedings of the 6th
ACM conference on Electronic commerce. NY, USA: ACM Press.

Shieber, S. M. 2006. Does the Turing Test demonstrate intelli-
gence or not? InProceedings of the Twenty-First National Con-
ference on Artificial Intelligence (AAAI-06).

Takagi, H. 2001. Interactive evolutionary computation: Fusion of
the capabilities of EC optimization and human evaluation.Pro-
ceedings of the IEEE89(9):1275–1296.

Turing, A. M. 1938. Systems of logic based on ordinals: a dis-
sertation. Ph.D. dissertation, Cambridge University, Cambridge,
UK. Published by Hodgson Son, London, UK.

von Ahn, L.; Blum, M.; Hopper, N.; and Langford, J. 2003.
Captcha: Using hard AI problems for security. InProceedings of
Eurocrypt, 294–311.

von Ahn, L. 2006. Games with a purpose.Computer39(6).

