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ABSTRACT

In recent years, the blogosphere has experienced a subbtant
crease in the number of posts published daily, forcing usecspe
with information overload. The task of guiding users throubis
flood of information has thus become critical. To addressigsue,
we present a principled approach for picking a set of postsiibst
covers the important stories in the blogosphere.

We define a simple and elegant notion of coverage and formaliz
it as a submodular optimization problem, for which we can- effi
ciently compute a near-optimal solution. In addition, sipeople
have varied interests, the ideal coverage algorithm shioglatpo-
rate user preferences in order to tailor the selected positslivid-
ual tastes. We define the problemle&rning a personalized cov-
erage functiorby providing an appropriate user-interaction model
and formalizing an online learning framework for this tasW/e
then provide a no-regret algorithm which can quickly learrsar’s
preferences from limited feedback.

We evaluate our coverage and personalization algorithrieex
sively over real blog data. Results from a user study showdha
simple coverage algorithm does as well as most popular kgeg a
gregation sites, including Google Blog Search, Yahoo! Buard
Digg. Furthermore, we demonstrate empirically that oupatgm
can successfully adapt to user preferences. We believeothat
technique, especially with personalization, can drarafijiceduce
information overload.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence ]: Learning; G.3 Probability and Statis-
tics]

General Terms
Algorithms, Experimentation

1. INTRODUCTION

“How many blogs does the world need?” asked TIME Magazine
in 2008 [21], claiming that there are already too many. lutldlee
blogosphere has experienced a substantial increase iruthbarn
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of posts published daily. One immediate consequence isrthay
readers now suffer from information overload.

While the vast majority of blogs are not worth reading for the
average user, even the good ones are too many to keep up with.
Moreover, there is often significant overlap in content aghomul-
tiple blogs. To further complicate matters, many storiesnseo
resonate in the blogosphere to an extent that is largelyrtelated
with their true importance. For example, in the spring of 200
Politico broke a story about John Edwards’ $400 haircut itog b
post [26], which was almost instantly seized upon by theatgte
blogosphere. Over the next two weeks, the haircut storykepar
several major online debates. Avoiding this story was diffiéor
most Web users, and nearly impossible for those intereatpdli-
tics but not in this particular line of debate.

The goal of this paper is taurn down the noisén the blogo-
sphere. We assume that users have very limited time formgadi
blog posts, and thus our goal is to show them a small set of post
covering the important stories currently being discusgeadtther-
more, we allow users to personalize the process; afterrainman’s
noise may be another man’s music.

In this paper, we formally define what it means for a set of post
to cover the blogosphere. One desired property of this natio
coverage is that it must be an efficiently computable fumctieor
instance, due to the large size of our data sets, we cannohosie
clustering algorithms, as they require quadratic comjpartat In
addition, the coverage function must be expressive enoaghat
it can recognize the important stories in the blogospherievet
the same time identify the important features of a particdézu-
ment. Finally, the notion should be soft, allowing partiat prob-
abilistic) coverage, as posts rarely offer complete cayeraf their
stories. We propose a simple and elegant notion that address
these requirements and formalize a corresponding obge#tinc-
tion, which exhibits a natural diminishing returns progethown
as submodularity. We present a near-optimal efficient élyorfor
optimizing this function.

We then extend our notion of coveraggi@rsonalized coverage
Posts that cover the blogosphere for the average populatymot
be optimal for a particular user, given her personal prefees. For
example, a user may like stories about badminton, irresmeof
their prevalence. Learning a personalized coverage fometilows
us to show the users posts that are better suited to thesstast

We formalize and address the probleml@érning a personal-
ized coverage functionFirst, we define an interaction model for
user feedback that takes into account the order in which tisesp
are read. Using this model, we then define an online learrég s
ting for coverage functions and provide a simple no-regtgo-a
rithm that guarantees we can quickly adapt to a user’s @rbes.

We evaluate our algorithm, Turning Down the Noise (TDN), on
real blog data collected over a two week period in Januan®200
We compare TDN to popular blog aggregation sites (GooglegBlo



Search [4], Yahoo! Buzz [7], Digg [3], and BlogPulse [1]), aser-
ing topicality and redundancy. Results from a user studyvsiat

our simple, fully-automated coverage algorithm perforrasnel|

as, or better than, most of these sites, including thosedb@mseser
voting or human editing.

Perhaps most importantly, we demonstrate TDN’s abilityuo-s
cessfully adapt to user preferences. Personalization migtim-
proves user satisfaction, but is also able to simulate usits
different interests. We believe that our algorithm, esakgciwith
personalization, can dramatically improve the informatwerload
situation.

In summary, our main contributions are:

e We define the notion ofovering the blogospherand for-
malize it as a submodular optimization problem, for which
we provide a near-optimal solution.

e \We define and formalize the problem lefarning a person-
alized coverage functigrand provide a no-regret algorithm
for learning user preferences from limited feedback.

e We evaluate our algorithm on real blog data using both user
studies and simulations, and compare it to popular blog ag-
gregation sites.

2. COVERAGE

Figure 1(a) shows a typical day in the blogosphere (January 1
2009). The size of a word is proportional to its frequencyoasr
the blogosphere. Examining the picture, we can spot somieof t
popular stories for that day: the inauguration of Barack@aand
the Israel-Gaza conflict.

Many posts cover the same story, e.g., the inauguration.eMor
over, stories may have a certain degree of overlap. In&ljtiour
goal is to select a small set of blog posts that captures theritaint
stories of the day. At the same time, we wish to avoid reduaglan
In the following section we formally state the problem of emage
and present an efficient optimization algorithm.

2.1 Documents and Features

We characterize the posts in the blogosphere by features- Fe
tures can be any arbitrary collection of objects, high- ov-level,
for example: significant words (such as named entities angh no
phrases), topics extracted from the corpus, or even hilgvei-se-
mantic relations. As an example, refer again to Figure l&xe,
our features are common named entities. Each document &vill b
about one or more of these features. More formally:

DEFINITION 2.1 (BLoGOSPHERB. Ablogosphere is a triplet
(U, Postscover(-)). U = {u1,us,...} is a finite set of features,
and Posts is a finite set of posts. The relation between posts a
features is captured by treveringfunction. covey(i) : U — R*
quantifies the amount pgs€ Posts covers feature;.

In the simplest casepver (-) is a binary indicator function, turn-
ing posts into subsets of features. Later, we explore otbfers
notions of coverage functions, e.g., ones with probaiilistter-
pretations.

2.2 Covering Features

Given our mode(Z/, Posts cover (-)), we wish to determine how
effectively a given small set of posts can cover the impadrsao-
ries in the blogosphere. More formally, our goal is to picleaaf k&
postsA C Posts in order to maximize some coverage objective. In
this section we define desired properties of this objectivetion,
and propose a solution that addresses these requirements.

Perhaps the most natural idea is to foktsterthe posts, where
posts in the same cluster cover the same features. Then, give
ters, we can pick a representative post from each ofithergest

clusters. Such clustering approaches are common in tha-lite
ture [28]. However, most clustering methods require us toate
the distance between every pair of posts, which amount¥(ic’)
comparisons forn posts. Due to the sizable amount of posts pub-
lished daily, methods that requi@(n?) computation are practi-
cally infeasible. Our first desirable property for a coverdanction
is scalability, i.e., we should be able to evaluate coverage in time
linear in the number of posts.

Another solution, which does not require quadratic comipfex
would be to formulate coverage as maximizing the function,

F(A) =) covera(i), @)

€U

where thecovery (¢) function measures the degree to which posts
A cover featurey;. If posts correspond to a collection of features,
andcover (-) are binary indicator functions, then Eq. 1 reduces to
theBudgeted Maximum Coverageoblem:

DEFINITION 2.2 (BUDGETEDMAXIMUM COVERAGE).
Given a set of ground elemerdis a collectionS = {51, ...Sn } of
subsets dff, and a budget > 0, selectd C S of size at most which
maximizes the number of covered elemqr[tgjeA S;l.

In our setting, this coverage can be formalized as maxirgizin

F(A)=> 1(3a; € A: cover(i) = 1).
€U
Although max-coverage is an NP-hard problem, there araakve
efficient and effective approximation algorithms for trask. How-
ever, this naive approach suffers from some serious drawgbac

e Feature significance in corpug\ll features in a corpus are
treated equally, and thus we cannot emphasize the impor-
tance of certain features. For example, covering “CatHedra
High School” should not be as valuable as covering “Obama.”

e Feature significance in pasthis objective function does not
characterize how relevant a post is to a particular featugg,

a post about Obama’s speech covers Obama just as much
as a post that barely mentions him. As a side effect, this
objective rewards “name-dropping” posts (posts that idelu
many features, without being about any of them).

e Incremental coverageThis coverage notion is too strong,
since after seeing one post that covers a certain feature, we
will never gain anything from another post that covers the
same feature. This does not correspond to our intuitive no-
tion of coverage, which should be subject to the law of di-
minishing returns: each additional time we see a feature we
get an additional reward, which decreases with the number
of occurrences. For example, suppose we show the user a
post about Obama’s inauguration. The second post we con-
sider showing her is about the effect of Obama’s presidency
on China. Figure 1(b) shows the raw coverage of the sec-
ond post, and “Obama” is the top-covered feature. However,
if we take into account the fact that we have already cov-
ered the feature “Obama” to some extent by the first post, the
coverage by the second post changes. Figure 1(c) shows the
incremental coveragby the second post. As illustrated, the
significance of this post towards “Obama” is diminished, and
most of our reward would come from covering “China.”

We now address each of these three issues. To adBesgsre
significance in corpyswe can simply assign weights; to each
featureu;:

F(A) = Zwi 1(3a; € A: cover (i)
icUu
If features are words, the weights can correspond to theguency
in the data set.

1).
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Figure 1: (a) Global word frequency across the blogospherelanuary 17, 2009). The size of a word is proportional to its fequency.
(b) Coverage vs. (c) incremental coverage of a post about Ob® and China, given that we already saw a post about Obama. The
incremental coverage of Obama is much smaller than the regal coverage.

We now turn our attention t&eature significance in podtach
post should exhibit different degrees of coverage for treuies
it contains, which can be achieved by softening the notiocoof
erage,cover;(i). One approach is to use a generative model to
estimate the probability of a feature given a pd3tu; | post). If,
for example, our features are topics discovered by a topideho
then this term is simply the probability that documenis about
topici. More generally, any generative model for the particular se
of features can be used to define this probability.

Given such a probabilistic model, we can define the notiowftf s
coverage more formally. If our features are sufficientlyhilgvel,
e.g., topics in a topic model, then a post can be thought oémgb
about a single feature, in which casever;(i) = P(u; | post).
Alternatively, for lower-level features, such as namedties, we
could assume that each post is abbtdieatures. If these features
are picked, for example, at random with replacement fie(a; |
post;), then our coverage will beconwver; (i) = 1 — (1 — P(u; |
posg.))l. By requiring that all posts cover the same number of fea-
tures, we alleviate the problem of “name-dropping,” sincgosat
cannot cover a large number of features well.

The probabilistic approach allows us to define feature impor
tance in individual posts as well as in the whole corpus. Hene
if we define coverage aB'(A) = >, ., wi ZajeA cover; (1),
then thelncremental coveragproblem would persist, as this func-
tion does not possess the diminishing returns propertyteas
extending the probabilistic interpretation further, we céew set-
coverage as a sampling procedure: each post tries to caaterde
¢ with probability cover; (i), and the feature is covered if at least
one of the posts ind succeeded. Thus, a grows, adding a post
provides less and less additional coverage. Formally, welefine
the probabilistic coverage of a feature by a set of pobtss:

covers(i) = 1— [] (1 — cover(i)).
a;€EA

@)

Finally, we propose the following objective function foretiprob-
lem of probabilistic coverage of the blogosphere:

F(A) = ZwicoverA(i)

e’

(©)

Our task is to findk posts maximizing the above objective function:
A F(A). 4)

argmax
ACPosts| A|<k

2.3 Optimizing Coverage of the Blogosphere

Using the notion of coverage in Eq. 2, our goal now is to find
the set of postsA that maximizes our objective function in Eq. 3.
Unfortunately, we can show by reduction from max-coverdgs t

this objective is NP-complete, suggesting that the exaginmaa-
tion of this function is intractable. However, our objeetifunction
satisfies an intuitive diminishing returns propersgbmodularity
which allows us to find good approximations very efficiently:

DEFINITION 2.3 (SUBMODULARITY). A setfunctiornF' issub-
modularif, VA C B C V,Vs € V\ B, F(AU{s}) — F(A) >
F(Bu{s}) — F(B).

CLAaIM 2.4. The probabilistic coverage function for the blogo-
sphere in Eq. 3 is submodular [15].

Intuitively, submodularity characterizes the notion theading a
posts after reading a small set of postsprovides more coverage
than reading: after having already read the larger £D A.
Although maximizing submodular functions is NP-hard [28}],
discovering this property in our problem, we can take achg@atof
several efficient approximation algorithms with theoratiguaran-
tees. For example, the classic result of Nemhauser et §isfivs
that by simply applying a greedy algorithm to maximize oujeab
tive function in Eq. 3, we can obtain@ — é) approximation of
the optimal value. Thus, a simple greedy optimization cawvige
us with a near-optimal solution. However, since our set aitpds
very large, a naive greedy approach can be too costly. Tdreref
we use CELF [22], which provides the same approximationauar
tees, but uses lazy evaluations, often leading to drampgiedups.

3. PERSONALIZATION

Thus far, we have defined a global notion of coverage for the
blogosphere. However, each user has different interests ttee
selected posts that cover the prevalent stories may comtaimy
topics that do not interest him. Instead, our goal in thigieads
to utilize user feedback in order tearn a personalized notion of
coverage for each user.

Recall that, in the previous sectiofi{.A) assigns a fixed weight
w; to every feature, representing its importance. In pracfiee-
ture importance varies among different users. One usertmayle
about a feature “NASCAR,” while others may be indifferenitto
To address this issue, we augment the fixed weightsvith per-
sonalized preferences; for each feature. In the following, we
assume that a user’s coverage function is of the form:

= 7 w; covera(i),

€U

Froe(A) (%)

for some unknown set of weigh{sr; }. Our goal now is to learn
a user's coverage functiofi,« (.A) by learning this optimal set of
preferenceqr; }.



3.1 Interaction Models

In order to receive personalized results, users need to corirm
cate their preferences. Siné& is a set function, the most natu-
ral notion of feedback from a machine learning perspectioeld/
be for users to provide a single label for the set of postsittieat
are presented, indicating whether they like or dislike thire set.
However, this approach suffers from two limitations. Fifsom
the point of view of the user, it is not very natural to proviged-
back on an entire set of posts. Second, since there are extedlye
many such sets, we are likely to need an extensive amouneof us
feedback (in terms of sets of posts) before we could leasTtimic-
tion. Instead, we assume that users go through a list of pbsts
order, submitting feedback; (“liked”= +1, “indifferent” = 0, “dis-
liked” = -1) for each post;; € A. We take no feedback on a post
to mean “indifferent.”

3.2 Personalization by Minimizing Regret

Our objective function is defined in terms of sets, but oudfee
back is in terms of individual posts. How should we provide an
appropriate credit assignment?

One possible solution would be to assume that the feedbatk th
a user provides for a particular post is independent of therot
posts presented in the same set. In this case, one can vielsehe
feedback as being labeled data on which we can train a ckassifi
to determine which posts the user likes. However, this apsom
does not fit with our interaction model, as a user might na Bk
post either because of its content or because previous pasés
already covered the story.

To address this issue, we consider theremental coveragef
a post, i.e., the advantage it provides over the previoutsspdhe
incremental coverage we receive by adding pgsio the setA is:

inc-cover; (A, i) = COVelauq, (i) — covera(i).

Note that |fcover,4( ) is defined as in Eq. 2, then the incremental
coverage is the probability that; is the first post to cover feature
u;. Furthermore, if we view the set of documemsas an ordered
setA = {a1,...,ax}*, the sum of incremental coverages is a tele-
scoping sum that yields the coverage of a set of documénts

= ) cover,,

aj cA

> inc-coves (a1,
aJE.A

— covel,,;_, (1)

= covery (i),

wherea,.;—1 is shorthand for the set of documefts,, ..., a;-1}.

Since our decisions at timecan only take into account the feed-
back we have received up to tinte— 1, the decisions we made
may have been suboptimal. For comparison, consider therdewa
we would have received if we had made an informed choice for
the user’s preferencesconsidering all of the feedback from tfie
time steps:

BestAvgRew(T A(t)7 f(t)).

= max — Z Rew(w

That s, after seeing all the user feedback, what would haee the
right choice for user preference weight8 The difference between
our reward and this best choice in retrospect is calledabeet

(6)

DEFINITION 3.1 (REGRET). Our average regret aftef’ time
steps is the differencBest AvgRew(T) — AvgRew(T).

Positive regret means that we would have preferred to usedights
7 that maximize Eq. 6 instead of our actual choice of weigtits.
A no-regret learning algorithmsuch as the one we describe in the
next section, will allow us to learm* such that, ag" goes to
infinity, the regret will go to zero at a rapid rate. Intuitiyethis
no-regret guarantee means that we learn a sequefitéhat does
as well as any fixedr—including the true user preferences,—on
the sets of posts that the user is presented. By learningettsep-
alized coverage function for a particular user in this manttee
posts we provide will be tailored to his tastes.

A stronger guarantee would be to show that the weigfitsnot
only do well on the sets of posts from which they were learihed,
also on the posts that would have been selected had we used the
true ™ as the user preference weights for each day. For example,
consider a user who is interested in politics and sportsjshalso
passionate about bagpiping. We may never show him any bagpip
ing posts, since they are not likely to be common. Thus, we may
never receive feedback that would allow us to accuratelyahtbils
portion of the user’s true preferences. We intend to addtesss-
sue in future work.

3.3 Learning a User’s Preferences

We now describe our algorithm for learning” from repeated
user feedback sessions. Like many online algorithms [1#] ap-
proach updates our estimated” using a multiplicative update
rule. In particular, our approach can be viewed as a speais
of Freund and Schapire’s multiplicative weights algoritfi8].

Using incremental coverages, we can now deflne the reward we The algorithm starts by choosing an initial set of weight?.

receive after presenting to a user with preferencesand obtain-
ing feedbackf:

Rew(m, A, f) = Zm w; Z f; inc-cover(aij—1,1).

€U a; €A

If the user liked all of the documents A (i.e., vy, f; = 1), this
reward becomes exactly the coverage function we are see¢ting
maximize,Fr (A) = >, ., m; w; covera(i), asin Eq. 5.

Our algorithm maintains an estimate of the user’s prefersrat
each time step, 7). Given this estimate, we optimiz&_., (A)

and pick a set of document$() to show the user. After receiving
feedbackf™®, we gain a reward oRew (™, AV, f®). After T
time steps, our average reward is therefore:

T
- % S Rew(x®, AV, f©).

t=1

1This ordering could be defined by the order the posts are prege
to the user, e.g., the one picked by the greedy algorithm.

AvgRew(T

(WLOG, we assume weights are normalized to sum to 1, since the
coverage function is insensitive to scaling.) In the absayfgrior
knowledge about the user, we can choose the uniform disiitnu

L1
T

If we have prior knowledge about the user, we can start froen th
corresponding set of weights.

At every roundt, we use our current distribution® to pick &
posts, A", to show the user. After receiving feedbagi’, we
would like to increase the weight of features covered by ptst
user liked, and decrease the weight of features covered iy fite
user disliked. These updates can be achieved by a simplé mult
plicative update rule:

1) _ 1 1) g-mG D)
™, 7 w8 ,
whereZ is the normalization constant, € (0, 1) is the learning

rate, and, intuitively, M (i, f*)) measures the contribution (posi-

@)



tive or negative) that featurehad on our reward:

wi Y, caw £ inc-covey; (a.j-1,1)

2 max; w;

M(i, fP)

)

where the normalization by max; w; is simply used to keep this
term in the rangé—0.5, 0.5].

If the learning rates is small, we make large moves based on
the user feedback. As the learning rate tends to 1, thesaegda
become less significant. Thus, intuitively, we will startima small
value of 3 and slowly increase it.

CLaim 3.2. If, for number of personalization epoclis we use
a learning rateSr given by:
1

14+ /211}\1/1\

then our preference learning procedure will have regret rabed

by:
In ||
- |-

Since our regret goes to zero @sgoes to infinity, our approach
is called a no-regret algorithm. The proof follows from Fnelu
and Schapire [18], by formalizing our learning process ag@: t
player repeated matrix game involving our algorithm andubker
(cf. extended version of this paper for details [15]).

Br : 9

BestAvgRew(T') — AvgRew(T) < O (

4. EVALUATION

We evaluate our algorithm on real blog data collected overa t
week period in January 2009. These posts come from a divetse s
of blogs, including personal blogs, blogs from mainstreaaws
sites, commercial blogs, and many others.

We obtain the data from Spinn3r, which indexes and crawls 12
million blogs at the rate of approximately 500,000 posts gy
[5]. After performing some simple data cleaning steps, sash
duplicate post removal, we reduce this number to about 200,0
posts per day in our data set. However, as this is real Webitleta
still invariably noisy even after cleaning. Thus, our aitfum must
be robust to content extraction problems.

For each post, we extract named entities and noun phrases usi
the Stanford Named Entity Recognizer [17] and the LBJ Part of
Speech Tagger [25], respectively. We remove infrequentetam
entities and uninformative noun phrases (e.g., commonssuch
as “year”), leaving us with a total collection size of neaBly00.
(More details can be found in the extended version [15].)

We evaluate an instantiation of our algorithm with high leve
topic model-based features, which we refer to as TDN+LDA. We
define our set of features as topics from a latent Dirichletakion
(LDA) [9] topic model learned on the noun phrases and named en
tities described above. We take the weight of each featue the
fraction of words in the corpus assigned to that topic. Axdbed
in Section 2.2, we can directly defimever; (i) = P(u; | post),
which in the setting of topic models is the probability tipat; is
about topici. We use a Gibbs sampling implementation of LDA
[19] with 100 topics and the default parameter settings.

We also evaluate a variant of our algorithm with features-con
sisting of the named entities and noun phrases directlychvhie
refer to as TDN+NE. As this variant uses a lower-level featsmt,
itassumes a post can cover multiple features, and thushesesy-
erage function for coveringfeatures described in Section 2.2. The
value of/ is set to be the average number of occurrences of named
entities and nouns per document in our corpus, which is appro
mately 16. In this setting, post selection takes about fiveuieis.

4.1 Evaluating Coverage

As detailed in Section 2, the main objective of our algoritisrio
select a set of posts that best covers the important andlengto-
ries currently being discussed in the blogosphere. Themadd
events that took place during the time corresponding to aa d
set included the Israel-Gaza conflict, the inauguration afaBk
Obama, the gas dispute between Russia and Ukraine, as wed as
global financial crisis. As an example, here is the set ofpthit
our algorithm selects for an eight hour period on JanuaryfI&ir
budgetk is set to five:

1. Israel unilaterally halts fire as rockets persist

2. Downed jet lifted from ice-laden Hudson River

3. Israeli-trained Gaza doctor loses three daughters ae ihd
IDF tank shell

. EU wary as Russia and Ukraine reach gas deal

. Obama’s first day as president: prayers, war council, @oists,
White House reception

[

The selected five posts all cover important stories from plis
ticular day. The Israel-Gaza conflict appears twice in this due
to its extensive presence in the blogosphere at the timgirttpor-
tant to note, however, that these two posts present diffegrects
of the conflict, each being a prevalent story in its own rid@y.ex-
panding the budget to fifteen posts, the algorithm makegiaddl
selections related to other major stories of the day (e.gor@e
W. Bush’s legacy), but also selects “lifestyle” posts omgieh and
cooking, since these represent the large portion of thedsioigere
that is not directly related to news and current events.

As another example, here are the top five selected posts frem t
morning of January 23, the day after the Academy Award nomina
tions were announced:

1. Button is top Oscar nominee

2. Israel rules out opening Gaza border if Hamas gains
3. Paterson chooses Gillibrand for U.S. Senate
Fearless Kitchen: Recipe: Medieval Lamb Wrap

5. How Obama avoided a misguided policy blunder

A post describing the Oscar-nominated movkee Curious Case
of Benjamin Buttorsupplants the Israel-Gaza conflict at the top of
the list, while a cooking post makes it up to the fourth paositi

We wish to quantitatively evaluate how well a particular tpos
selection technique achieves the notion of coverage weridlesc
above onreal blog data However, the standard information re-
trieval metrics of precision and recall are not directly kqgble in
our case, since we do not have labels identifying all the alest
stories in the blogosphere on a given day and assigning thepet
cific posts. Rather, we measure tpicality of individual posts as
well as theredundancyof a set of posts. We say a posttépical

Once we have extracted the named entities and noun phraseswith respect to a given time period if its content is related tnajor

LDA is the slowest part of running TDN+LDA. After a 300 itera-
tion burn-in period, we run 2,500 iterations of Gibbs samgland
select 500 samples from them. On a single 3GHz processer, thi

news event from that period. A posis redundantwith respect to
a previous posp if it contains little or no additional information to
postp. An ideal set of posts that covers the major stories disclisse

process takes less than 2GB of RAM and between 1-2 hours to runin the blogosphere would have high topicality and low reduray.

for an eight hour corpus of blog posts. The submodular foncti
optimization needed to generate posts takes under a minute.

We conducted a study on 27 users to obtain labels for topical-
ity and redundancy on our data. We compared TDN+LDA and
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Figure 2: Topic representing the peanut butter recall from Jan-
uary 18, 2009, with the size of a word proportional to its impa-
tance in the topic.

TDN+NE to four popular blog aggregation sites: the front@ad
Digg, Google Blog Search, Nielsen BuzzMetrics’ BlogPuksed
Yahoo! Buzz. We intended on evaluating Technorati as wel, b
their RSS feed was unavailable for most days in our evalngie
riod. Additionally, we also examine the performance of dienp
objective functions on the post selection task.

4.1.1 Measuring Topicality

In order for users to measure the topicality of a blog posty th
need an idea of what the major news stories are from the samee ti
period. We express this information to our study particigany
providing them with headlines gathered from major news cesir
in five different categories: world news, politics, busisesports,
and entertainment. The headlines for each category aregaigd
from three different news sources to provide a wider sebector
the users and to avoid naming a single source as the defindive
outlet for a category. For instance, for politics we prederadlines
from ReutersUSA TodayandThe Washington PaosfThis collec-
tion of headlines is akin to a condensed newspaper, and eeteef
these stories agference stories

We present the participants with reference stories gathatre
particular time, e.g., January 18, 2009, 2:00pm EST, whietcall
thereference timeWe then show each participant a set of ten posts
that was chosen by one of the six post selection techniques, a
ask them to mark whether each post is “related” to the refexen
stories. Each post is presented as a title along with a skedrip-
tion. The users are not made aware of which technique thes post
come from, so as not to bias their ratings. The posts seldnted
TDN+LDA and TDN+NE were chosen from an eight hour window
of data ending at the reference time, while the posts seldnye
the popular blog aggregation sites were retrieved fromelsites
within fifteen minutes of the reference time.

Figure 3(left) shows the results of the topicality usermgsi on
the six techniques. On average, the sets of ten posts stlegte
Google Blog Search, TDN+LDA and Yahoo! Buzz each contain
five topical posts out of ten presented. The topicality oséheech-
niques is significantly better than that of TDN+NE, Digg arldd®
Pulse. BlogPulse selects the most linked-to posts of thevelaigh
does not seem to be a good heuristic for covering the importan
stories. Many of these posts are technology how-to pages$, su
as “Help With Social Bookmarking Sites,” the highest rankedt
from January 18. Digg selects its top posts by user votind thuns
the top selected posts consist of a few prevalent storiesreamy
entertaining or shocking posts, such as “Teen Stabbed Bue$/la
It To Job Interview,” the top post from February 6.

TDN+LDA outperforms TDN+NE because high-level features,
such as LDA topics, capture stories in a better way than el
features do. For example, for one eight hour period in oua dat
set, there is a coherent LDA topic about the EU-Russia gasscri
Therefore, when we cover this topic, we will present a stbat {s
about the crisis. However, the named entity “Russia” maydwe c
ered by multiple stories. TDN+NE selects a post about Risssia
plan to go ahead with the opening of a pediatric medical cénte

Moscow despite the current financial crisis, since it corganpor-
tant named entities and nouns like “Russia,” “Putin,” “i=jsetc.
Hence, if we only cover low-level features, we might selepbat
that is not topical, yet contains multiple important featur

While topicality captures a major aspect of our notion of-cov
erage, in that important current events are covered by tleeteel
posts, one drawback of this evaluation method is that lifedilog
posts are not adequately represented. It is difficult to dedirset
of reference sites that summarize the day’s most importipes
or most prevalent do-it-yourself tips, for instance. Ferthore, in
our case, we did not want to show our study participants s t
five categories of reference stories, so as not to overwhleémt
As a result, a post related to an important technology staryldy
likely not be considered topical, as we left this category ou

4.1.2 Measuring Redundancy

The user study described in the previous section allowea us t
measure whether posts were topical or not. However, tdpical
is not enough to judge the goodness of a set of posts, singe the
may all be about the same story, and hence not interestisgedd,
we want the posts to be diverse, so that they capture all afithe
portant stories in the blogosphere, as well as appeal tyeneis
interests. As part of our user study, we asked users to loaksat
of fifteen posts selected by one of the six previously deedritost
selection techniques, and mark any occurrences they thoveye
redundant. Each of 27 participants was presented withreitfoeor
three sets of posts generated by different algorithms desame
time period. The users were not aware of the sources of this.pos

Figure 3(right) shows that both variants of our algorithntpeu-
form Digg, BlogPulse and Google Blog Search on the redundanc
metric. In other words, our algorithm selects diverse séfsosts.
This diversity is primarily due to the diminishing returneoperty
of our objective function. If we have covered the importa@a-f
tures of a story once, covering it again yields only a smallarel.
Google Blog Search has the highest number of redundanttsesul
and has high variance, suggesting that on some days mang of th
posts on its front page are similar. In fact, on average, &
selected by Google Blog Search are nearly six times as reahtind
as those selected by TDN+LDA.

However, it should be noted that performing well on the redun
dancy metric alone is not sufficient. For example, it may touh
that all the posts picked by an algorithm are non-redundaut,
meaningless, and hence of no interest to a user. Thus, aritligo
needs to perform well on both the topicality and the redungan
metric in order for it to be useful.

TDN+LDA and Yahoo! Buzz were the two techniques that per-
formed well in both metrics. However, while Yahoo! Buzz uses
Web search trends, user voting and other features to sedeuists,
TDN+LDA achieves the same topicality and redundancy perfor
mance by selecting posts only using simple text featurest- Fu
thermore, TDN+LDA adapts its results to user preferenceslea
scribed in Section 4.2.

4.1.3 Alternative Objective Functions

As an alternative to the submodular objective function aefin
in Eq. 3, we consider two simpler objective functions.

LDA-based Modular Function. A modular functioris an additive

set function where each element is associated with a fixek sco
and the value for a setl is the sum of the scores of the elements
of A. Since the score of a post does not depend on the other ele-
ments in the set, there is no incentive to select a diversef pessts.

The naive way of selecting posts using LDA fits under this ntexdu
framework. We first pick the top topics based on their weight in
the corpus. For each one, we pick the post that covers it ttet.mo
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Figure 3: Left: Results from user study measuring topicalit. The bars show the average number of posts (out of 10) that ess
found to be topical with respect to the reference stories. Rjht: Results of the redundancy user study. Users report the mumber of
redundant posts for each post selection technique they are@sented with. Error bars on all plots indicate standard error.

In addition to the potential for redundancy mentioned abokis
technique suffers from the fact that it commits to a topiespec-
tive of the quality of the posts covering it. Furthermoregie\f a
post covers multiple topics well, it might not be selectediese
may be some posts that better cover each individual topimgus
strictly submodular objective function alleviates thesebfems.

For example, if we define our features based on a 50-topic LDA
model trained on an eight hour data set from January 18, fie to
with the lowest weight is about the peanut butter recall, goma
news story at this timecf. Figure 2). Thus, if we select fifteen
posts following the naive LDA approach, we do not pick a post
from this topic. However, the weight of this topic (0.019)nst
much lower than the mean topic weight (0.020). Moreoversesin
this topic closely corresponds to a prevalent news storpyrpasts
cover it with high probability. TDN selects such a post bessgu
unlike the naive LDA approach, it simultaneously considssth
the topic weights and the post coverage probabilities.

Budgeted Maximum Coverage. Another simple objective func-
tion we consider is budgeted maximum coverage, introduoed i
Definition 2.2, but with each feature (in this case, noun pbsa
and named entities) weighted by its corpus frequency. Qpitig
this objective leads to the aforementioned “name-drogpiugts.
For example, on an eight hour data set from January 20, tlemdec
post selected announces the schedule of a rock band’s upgomi
world tour, and thus completely covers the features, “Wagtoin,”
“Boston,” “New York,” “London,” “Rome,” and a few dozen more
cities and countries. Once this post has been selecte@, itheo
further incentive to cover these features.

4.2 Personalization

There are two methods by which we evaluate how well our algo-
rithm personalizes the posts it selects in response to asdbfck.
In one setting, we conduct a user study to directly measuve ho
many of the presented posts a study participant would likedd.
In the second setting, we simulate user preferences on etéarg
set of blog posts and observe how our objective functit()
changes with respect to the unpersonalized case.

4.2.1 Preferences of Real Users

We divide our blog data into 33 eight hour segments (epochs),
and pick a starting segment at random for a particular usee. W
present our user with a set of ten posts from his starting segjm
selected using TDN+LDA. The posts are displayed as a titte an

short summary. The user is instructed to read down the ligbefs
and, one by one, mark each post as “would like to read,” “would
not like to read,” or “indifferent.” The user is told to makaah
decision with respect to the previous posts displayed ihgég so

as to capture the notion of incremental coverage. For exanapl
user might be excited to read a post about Obama’s inauguarati
appearing at the top slot in a particular result set, and tmusd
mark it as “like to read.” However, if four other very similposts
appear below it, by the time he gets to rating the fifth inaagan
post in a row, he will likely label it as “not like to read.”

After each set of ten posts, our personalization algoritsesuhe
user ratings to update the weight§’, and selects a personalized
set of posts for the next epothWe also ask the user to mark his
preferences on unpersonalized posts presented for theegaooks.
The order in which these two conditions are presented isaiaad
ized. We repeat this process for a total of five epochs. Adghist
a longitudinal study, and we do not wish it to be overly tedidor
our participants, we accelerate the personalization by us-
ing a learning rates of 0.5, corresponding to a short-term learning
horizon (i.e..T ~ 9 from Eq. 9).

Figure 4(a) shows the result of this study on twenty usere Th
vertical axis of the plot shows the average number of postsi by
a user in a single epoch. As one would expect, at epoch 0, when
the posts are always unpersonalized, the number of likets p®s
approximately the same between the personalized and wmadrs
ized runs. However, in just two epochs, the users alreadw $ho
preference towards the personalized results.

If a user only prefers sports posts, personalization is,eesthe
user’s interests are narrow. In our study, however, theqpants
were simply instructed to rate posts with their own persqnef-
erences. As people are often eclectic and have varied sttetais
task is harder, but more realistic. Thus, it is notable thatare
still able to successfully adjust to user tastes in very feachs,
showing a significant improvement over the unpersonalizeg c

If instead of asking users to rate posts according to theggrel
tastes, we ask them to pretend that they only want to read post
a specific subject (e.g., India), we observe interestinditatise
behavior. Initially, the top posts selected are about thmrsimries
of the day, including the Israel-Gaza conflict and the Obamaa-

2As topics tend to change from one epoch to the next, we employ a
simple bipartite matching algorithm to map personalizati@ights
across epochs. Alternatively, one could use more receitt hopd-

els that are designed to work on streaming data ([10]).



guration. After a few epochs of marking any India-relatedtpo
as “like” and all others as “dislike,” the makeup of the sé&bec
posts changes to include more posts about the Indian subentt
(e.g., “Pakistan flaunts its all-weather ties with ChinaThis is
particularly notable given that these posts appear relgtinfre-
quently in our data set, and thus without personalizationrarely
selected. Also, while after enough epochs, stories abaiia kven-
tually supplant the other major news stories at the top oféisalt
set, the Israel-Gaza stories do not disappear from thedist, to
their high prevalence. We believe this is precisely the bienane
would want from such a personalization setting.

4.2.2 Simulating Preferences

gorithm. Another key difference is that most of these wetdssiack
the personalization functionality we provide.
In a recent paper [8], Agarwal et. al address a problem simila
to ours. Their task is to select four out of a set of sixteemiesto
to be displayed on the Yahoo! homepage. The sixteen staiges a
manually picked by human editors; hence, all are of highitual
The authors use click-through rate to learn online modeie#éazh
article. Their setting differs significantly from ours, sgawe tackle
the problem of selecting ten out of roughly 60,000 posts farhe
eight hour segment. Moreover, as described in section 4daiar
is very noisy, and we do not have access to click-througlsrate
Another line of related research is the area of subtopidenet
[27, 13, 11]. In subtopic retrieval, the task is to retriewedments

We consider the case of a hypothetical sports fan, who always that cover many subtopics of the given query. In the tradéio

loves to read any sports-related post. In particular, eday he
is presented with a set of posts from the popular sports b&og F

information retrieval setting, it is assumed that the ratme of
each document is independent of the other documents. Howeve

House.com, and he marks that he likes all of them. We simulate in subtopic retrieval the utility of a document is contingen the

such a user in order to empirically examine the effect of peas
ization on the objective function.

Specifically, we simulate this sports fan by marking all Fan-
House.com posts as “liked” over a specified number of petsona
ization epochs, updating the personalization weigt{3at each
epoch. On the next epoch, which we call the evaluation epoch,
we compute our objective functiafi(.A) on three different sets of
posts. First, we computg'(.A) on the FanHouse.com posts from
this epoch, hypothesizing that the more epochs we spendmpers
alizing prior to the evaluation epoch, the higher this vakik be.
Second, we comput&’(.A) on all the posts from DeadSpin.com,
another popular sports blog. We also expect to see a higtes va
of our objective in this case. Finally, we computg.4) on all the
posts from the HuffingtonPost.com Blog, a popular polititzgb
The expectation is that by personalizing on sports postseeeral
days,F'(A) for a setA of politics posts will decrease with respect
to the unpersonalized case.

Figure 4(b) shows the results of this experiment with walue
of 0.5, and we observe precisely the hypothesized behavioe
vertical axis of this plot shows the ratio @f(.A) computed with
the learned personalization weights to thatrofA) with the un-
personalized uniform weights, allowing us to compare atbe
three blogs. Thus, points on the plot that appear highemgaibe
vertical axis than 1 indicate an improvement over the urgppak
ized case, while any value below 1 indicates a decline wigheet
to the unpersonalized case.

Figure 4(c) shows the same simulation but with= 0.1. This is
an aggressive setting of the learning rate, and thus, as®ddhe
plot shows the objective function changing in the same tivadut
more rapidly when compared to Figure 4(b). These figuresucapt
an important trade off for a deployed system, in that by agythe
learning rate3, we trade off the speed of personalization with the
variety of selected posts.

5. RELATED WORK

Recently, there has been an increase in the number of website
that index blogs and display a list of the most popular ssorf8&ome
examples of such websites are Google Blog Search [4], Yahoo!
Buzz [7], Digg [3], Technorati [6], and Blogpulse [1]. Somé o
these websites display posts without any manual intervené.g.,
Google Blog Search and Blogpulse. However, most of these web
sites display posts which have either been handpicked higredi
or have been voted for by users of the website. Most webdits t
pick posts automatically use a combination of features sisdimk
structure [2], trends in search engine queries [7], and tivalrer
of times a post is emailed or shared. Currently, we are oniygus
features derived from the text of the posts, although in theré
we hope to incorporate the link structure between postsdotal-

other retrieved documents. In particular, a newly retribdec-
ument is relevant only if it covers subtopics other than theso
covered by previous documents. Thus, the concept of retevan
in subtopic retrieval is similar to our notion of “coveragehich
has a diminishing returns characteristic. However, whilbtspic
retrieval is query-based, we intend to cover all the popstaries
being discussed in the blogosphere.

Two common approaches to personalizationcal&borative fil-
tering [23, 14] andcontent-based filteringIn collaborative filter-
ing, user preferences are learned in a content-agnostinenday
correlating the user’s past activity with data from the entiser
community. In a content-based approach, documents arenreco
mended to a user if they are similar to documents that the user
previously liked, where similarity is based on documenttean
Using a content-based approach, we provide theoreticahgtees
for personalization. Moreover, we currently do not havekimel of
user base that is needed for collaborative filtering to bectife.

Leskovec et al. propose a solution to the problem of selgctin
which blogs to read in order to come across all the importtoit s
ries quickly [22]. Although related to our problem, a fundamtal
difference is that instead of trying to select which blogs¢ad,
we present the user with a selection of posts from variougshlo
Moreover our approach is completely content based, wheheas
approach of Leskovec et al. is based only on the links between
blogs. In addition, we also incorporate personalizatioto iour
algorithm, which they do not.

There has also been extensive work on building models and an-
alyzing the structure of the blogosphere. For example,nFéti
al. [16] present a model of information flow in the blogosgmher
We could potentially leverage such analysis in the futurerater
to extract better features for our algorithms. Blogscopei§an-
tended to be an analysis and visualization tool for the tdpbere.
Unlike us, they are not trying to cover the blogosphere. dadt
Blogscope presents the user with a search interface, argkstsy
some related words based on the search query. They give -a pref
erence to words whose frequency increases by a large amount i
the past 24 hours (e.g., words with a high “burstiness”). &boer,
they do not employ any personalization.

6. CONCLUSIONS

In this paper we describe the problemtofning down the noise
in the blogosphere. While the vast majority of blog postsrat
interesting for the average user, their quantity is trulpnagkable.
For this reason, many readers suffer from information maal
Our goal is to show them a small set of posts covering only the
important stories currently being discussed.

We start by exploring different desired properties of caggr
functions. We then formalize the notion of coverage as a fubm
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ular optimization problem, and present an efficient aldonito se-
lect the top stories in the blogosphere.
Next, we generalize the coverage notion to the personatiase,

El
[10]

where we assume that each user has his own coverage function

based on his personal preferences. We introduce the problem
learning these coverage functions from limited user feeklba\Ve
formalize the notion of feedback, and illustrate a simplénanper-
sonalization method based on multiplicative updates ofitsi
This method achieves no-regret personalization.

We derive two different algorithms based on our general &am
work, each using different feature instantiations. Botjoathms
are efficient enough that they can be run on large, real-wadg
feeds. We compare both algorithms against popular blogeaggr
tion websites like Google Blog Search, Yahoo! Buzz, Diggd an
BlogPulse. In addition to post content, most of these website
richer features such as click-through rate, trends in $equeries
and link structure between posts, or use human intervetdipick
posts. We present results based on simulations and a usisr stu
Our TDN algorithm outperforms all others except for Yahoaiz2
(with which it is comparable), despite having access to-based
features only. Furthermore, our experiments demonsthatedur
algorithm can adapt to individual users’ preferences.

Our results emphasize that the simple notion of coveragewe i
troduced successfully captures the salient stories of #ye dVe
believe that this combination of coverage and personaizatill
prove to be a useful tool in the battle against informatioartnad.
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