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Abstract. We are interested in estimating individual labels given only
coarse, aggregated signal over the data points. In our setting, we receive
sets (“bags”) of unlabeled instances with constraints on label propor-
tions. We relax the unrealistic assumption of known label proportions,
made in previous work; instead, we assume only to have upper and lower
bounds, and constraints on bag differences. We motivate the problem,
propose an intuitive formulation and algorithm, and apply our meth-
ods to real-world scenarios. Across several domains, we show how using
only proportion constraints and no labeled examples, we can achieve
surprisingly high accuracy. In particular, we demonstrate how to predict
income level using rough stereotypes and how to perform sentiment anal-
ysis using very little information. We also apply our method to guide ex-
ploratory analysis, recovering geographical differences in twitter dialect.

1 Introduction

In many classification problems, labeled instances are often difficult, expensive,
or time-consuming to obtain. Unlabeled instances, on the other hand, are easier
to obtain, but it is harder to use them for classification. Semi-supervised learn-
ing [6] addresses this problem, using unlabeled instances together with a small
amount of labeled instances to improve performance.

We are interested in a learning setting where few, if any, labeled instances
exist. Instead, we only know some coarse, aggregated signal over the data points.
In particular, our instances are divided into sets (or bags), and we are given some
aggregate information about the bags; for example, we might know that one bag
has a higher percentage of positive-label instances than another.

There is recent interest in the task of estimating the labels of individual in-
stances given aggregate information, due to the many real-world scenarios in
which such information is available. In particular, aggregate information (e.g.,
summary statistics) is often published for sensitive data, when one cannot pub-
lish individual statistics. Being able to estimate individual labels from such data
has important implications regarding privacy and data anonymization.
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Fig. 1: We are given bags of instances and
rough estimates about label proportions
and differences between bags. Here, the
purple bag has at least 50% positive in-
stances, more than the red bag (but the
magnitude of the difference is uncertain).

Constraining class proportions of
unlabeled data has been shown to
be useful for semi-supervised learning
[20,27,25]. Under this setting, we are
given sets of unlabeled instances with
known label proportions (for example,
one bag has 30% positive instances
and 70% negative instances).

We believe that the assumption of
known proportions is unrealistic, and
limits the applicability of such meth-
ods. For example, suppose we want to
classify Twitter users by political orientation. We have some information about
the users (for example, the text of their tweets), but no explicit political affil-
iation to use as labels. We could, however, use the commonly-known fact that
political orientation is correlated with geographic location. Thus, we can con-
struct bags of users based on their geographic location: bags would correspond to
states whose residents predominantly vote for the Republican Party (red states)
or Democratic Party (blue states).

Estimating the proportion of Democrats on Twitter is hard, even using loca-
tion information. Previous election data or polls are unlikely to accurately reflect
the behavior of Twitter users. Instead of assuming known proportions, we pro-
pose a setup where our input is much weaker: we only know some constraints on
bag proportions and on differences between bags. In other words, users from red
states do not necessarily vote for the Republicans, but it is safe to expect to see
more Republicans in the red-state bags. It is also reasonable to assume that, say,
at least 10% of Blue-state users are Democrats. Using only this type of weak,
“ballpark” estimates, we would like to be able to classify individual users.

Figure 1 demonstrates this idea. Our input includes approximate information
on label proportions in some bags (left) and pairwise comparisons between bags
(middle) or sets of bags (right). Our contributions are as follows:

– We extend the Learning from Labeled Proportions setting by proposing a
new, more realistic scenario in which label proportions in each bag are not
assumed to be known, but rather some constraints on them. We suggest
various domains that lend themselves to this setting.

– We propose a simple and intuitive bi-convex problem formulation and an
efficient algorithm, including a novel form of cross-validation.

– We apply our algorithm to real data, perform sentiment analysis of movie
reviews from a very coarse signal, and predict income using stereotypes.

– We demonstrate the use of our method for exploratory analysis. We find
vernacular difference in geo-tagged tweets by incorporating expressive con-
straints such as “Alabama > Florida > New York”.

– Our algorithm is designed to use when human labeling resources are scarce.
Despite the simplicity of our methods, we achieve high accuracy with a very
modest amount of input, and considerably loose (or misspecified) constraints.
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2 Problem Formulation

We begin by formalizing our setting and problem. Consider a set of N training
instances XN = {x1,x2, . . . ,xN}. Each xi has a corresponding unknown label
y∗i ∈ {−1, 1}. In addition, we could be given a (possibly empty) set of L labeled
training instances XL = {xN+1,xN+2, . . . ,xN+L} with known binary labels yi,
where typically the vast majority of our instances are unlabeled: N � L. In
addition, we are given a set of K subsets of X , which we call bags:

B = {B1,B2, . . .BK},Bk ⊆ XN ∪ XL.

Note that bags B may overlap, and do not have to cover all training instances
XN . Let pk be the proportion of positive-labeled instances in bag Bk:

pk = |{i : i ∈ Bk, y∗i = 1}/|Bk| (1)

(where y∗i is replaced with yi for instances xi ∈ XL). Previous work [20] tackled
the case of known label proportions, suggesting that precise proportions could
be estimated using sampling. However, obtaining accurate estimates could be
costly or impractical (e.g., for bags with high label skew). In this work we do
not assume to know pk. Rather, we are given weaker prior knowledge, in the
form of constraints on proportions. We allow constraints of the following forms:
– Lower and upper bounds on bag proportions: lk ≤ pk ≤ uk
– Bag difference bounds: 0 ≤ lk12 ≤ pk1 − pk2 ≤ uk12

We are especially interested in the case where very little information is known:
constraints are loose, and specified only for a small subset of the bags.

Our goal is to predict a label for each xi, using a function f(x) = sign(wTϕ(x)),
where w is a weight vector and ϕ(·) is a feature map (to simplify notation we
drop a bias term b by assuming a vector 1N+L is appended to the features).
To attain the classification goal, we use a maximum-margin approach. Let R
be the subset of B for which we have upper and/or lower bounds. Let D be
the set of tuples (Bk1 ,Bk2) for which we have difference bounds. To solve this
problem we directly model the latent variable y∗ – the vector of unknown labels
y∗i ∈ {−1, 1}, in an alternating optimization approach.

Noting that (1) can be written as pk =
∑

i∈Bk
y∗i

2|Bk| + 1
2 , we formulate the

following bi-convex optimization problem:

argmin
y,w,ξ

1

2
wTw +

C

N

N∑
i=1

max(0, 1− yiwTϕ(xi)) +
CL
L

N+L∑
j=N+1

ξj

s.t.− 1 ≤ yi ≤ 1 ∀i ∈ 1, . . . , N

yjw
Tϕ(xj) ≥ 1− ξj ∀j ∈ {N + 1, . . . , N + L}

ξj ≥ 0 ∀j
lk ≤ p̂k ≤ uk ∀{k : Bk ∈ R}
lk12 ≤ p̂k1 − p̂k2 ≤ uk12 ∀{k1 6= k2 : (Bk1 ,Bk2) ∈ D},

(2)
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where p̂k = 1
2|Bk|

∑
i∈Bk

yi + 1
2 is the estimated positive label proportion in bag

Bk, lk (or uk) can be 0 (1) if not given as input, and analogously for difference
bounds lk12(uk12). C and CL are cost hyperparameters for unlabeled and labeled
instances, respectively. Intuitively, the second term in the objective function
helps find a weight vector w accurately predicting y, and constraints ensure that
we find an assignment to y that satisfies proportions constraints. CL controls
how much weight we give to our labeled instances versus our prior knowledge on
B. In our experiments we do not use any labeled instances, thus CL = 0.

3 Algorithm

We have formalized our problem as a bi-convex optimization problem – holding
either w or y fixed, we get a convex problem. We thus propose the following
intuitive alternating algorithm to solve it.

– For a fixed w, solve for y:

argmin
y

1

N

N∑
i=1

max(0, 1− yiwTϕ(xi))

s.t.− 1 ≤ yi ≤ 1 ∀i ∈ 1, . . . , N

lk ≤ p̂k ≤ uk ∀{k : Bk ∈ R}
lk12 ≤ p̂k1 − p̂k2 ≤ uk12 ∀{k1 6= k2 : (Bk1 ,Bk2) ∈ D},

(3)

– For a fixed y, solve w.r.t w:

argmin
w

1

2
wTw +

C

N

N∑
i=1

max(0, 1− yiwTϕ(xi)) +
CL
L

N+L∑
j=N+1

ξj

s.t. yjw
Tϕ(xj) ≥ 1− ξj ∀j ∈ {N + 1, . . . , N + L}

ξj ≥ 0 ∀j

(4)

Intuitively, the first step finds an assignment to y that is “close” to predictions
made by applying weights w, and also satisfies proportions constraints. The
second step re-adjusts w. Our alternating algorithm for this bi-convex problem
is thus guaranteed to descend, decreasing the objective in every iteration.

In practice, we replace y with Sign(y) (Sign(·) applied elementwise) in order
to use efficient off-the-shelf SVM solvers (See Figure 2. ). Empirically, in most
cases we observed that y were very close to either 1 or −1.

To start off the alternation, we need to initialize w. Specific label proportions
constraints are handled by modeling the latent y∗ directly, which is only possible
in our alternating scheme once a vector w is fixed. Thus, we start the alternating
optimization process by first solving the following simple convex program, which
uses only the partial order between bags. Let the set of pairwise orderings P be
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the set of all tuples (Bk1 ,Bk2) such that pk1 ≥ pk2 . To find our initial w we solve:

argmin
w,ξ

1

2
wTw +

1

|P|

|P|∑
p=1

ξp +
CL
L

N+L∑
j=N+1

ξj

s.t. yjw
Tϕ(xj) ≥ 1− ξj ∀j ∈ {N + 1, . . . , N + L}

wT 1

|Bk1 |
∑
i∈Bk1

ϕ(xi) ≥ wT 1

|Bk2 |
∑
i∈Bk2

ϕ(xi)− ξp

∀{k1 6= k2 : (Bk1 ,Bk2) ∈ P},

(5)

Input: x,R,D, C

1. Init w0: w0 ← Solution to (5)

2. Repeat
(a) Solve (3) for yt w.r.t wt−1

(b) Solve an SVM problem for wt

w.r.t Sign(yt) and cost param-
eter C

until
||wt−wt−1||22
||wt−1||22

≤ 10−5

Return w

Fig. 2: Alternating Algorithm

The second constraint in Problem
5 amounts to representing bags with
their (w-weighted) mean in feature-
space. Note that in order for a bag Bk
to be well-approximated by its mean
in feature-space, Bk should induce a
low-variance distribution over bag in-
stances. This is a strong assumption,
but yields a simple quadratic pro-
gram easy to solve quickly with stan-
dard solvers, and empirically leads to
good starting points in parameter-
space. We additionally note that when
CL = 0 (no labels), we recover as
a special case the Multiple-Instance
(MI) ranking problem proposed in the
image-retrieval framework of [13], al-
beit with a different objective (we
are interested in classifying instances
rather than learning to rank bags). We note that in Problem 3, we impose hard
constraints on label proportions. Certain sets of constraints could, of course, be
infeasible. In this case, a practitioner might adjust the constraints, or simply
make them soft (by adding slack variables).

Optimizing C. In practice, we need to tune hyperparameter C. This is typically
done with cross-validation (CV) grid search, measuring performance on held-out
data. However, standard CV is impossible here, as we have no labeled examples.

We thus develop a novel variant of CV, suited for our setting. We run K-fold
CV, splitting each bag Bk into training and held-out subsets. The intuition is
that the label proportion in uniformly-sampled subsets of a bag is similar to the
proportion pk in the entire bag. For each split we run Algorithm 2 on training
bags, and then compute by how much constraints are violated on held-out bags.
More formally, we compute the average deviations from bounds, max(p̂k−uk, 0),
max(lk − p̂k, 0) for p̂k the estimated label proportion in the held-out subset of
bag k. We do so over a grid, and select the C with lowest average violation.
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4 Evaluation

In order to evaluate our algorithm, we prepared the following datasets:

– Movie Reviews: The Movie Reviews dataset [17] contains 1000 positive
and 1000 negative movie reviews written before 2002. The task is to classify
the sentiment of movie reviews as positive or negative.

– Census: The Adult dataset [1] (48842 instances) is from the Census bureau.
The task is to predict whether a given adult makes more than $50,000 a year
based on attributes such as education, hours of work per week, etc.

For each of the classification tasks described, we run 10-fold cross-validation
and report average results (note that labels are used only for testing). For text
classification tasks, feature map ϕ(·) is the standard TF-IDF features.

We formed bags corresponding to the different tasks (see below), demon-
strating the wide applicability of the setting and our approach. In order to test
our method’s robustness we used approximate constraints, at times violating the
true underlying proportions.

Baselines. To the best of our knowledge, no other method aims to solve the
problem of Section 2. Thus, we compare ourselves to three natural baselines.

– “High vs. low”: One reasonable approach in our setting is to create two sets
of instances: The “high” set contains instances from bags with the highest
label proportions, and the “low” set – from bags with the lowest proportions.
The idea is to pretend all instances in the “high” set are positive, and in the
“low” set – negative, and learn a classifier with the noisy labels. To make the
baseline stronger, we use grid search to optimize hyper-parameter C (chosen
from a commonly used grid for SVM C values, [10−4, 10−3, . . . , 103, 104],
with 10-fold cross-validation and selecting C with best average). To counter
the class-imbalance created, we apply a weighted SVM.

– Supervised SVM: Our method does not need labeled instances, but instead
uses weaker, aggregate information. To show how many labels are needed
to obtain comparable results to our method, we report SVM results over
a labeled training set (note that this information is not available to our
algorithm). We use grid search to optimize hyper-parameter C as above.

– Learning from labeled proportions For the census data set, we com-
pare our method’s performance to results reported in [20] using known label
proportions with various algorithms. Note that our method does not have
access to the exact label proportions.

For our method, we select C using the constraint-violation approach de-
scribed in the previous section.

We run the procedure for a maximum of 200 iterations, with convergence
typically occurring long before. A typical iteration (for one value of C, one CV
split) took at most a few seconds on a standard laptop. Our data is available on
https://github.com/ttthhh/ballpark.git.

https://github.com/ttthhh/ballpark.git
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Table 1: Movie results for different sets of bags based on different choices of words.
Our method outperforms the naive SVM baseline, and rivals a supervised SVM with
a considerable number of labels.

Method Bgreat,Bgood,Bbad Bexcellent,Bnice,Bterrible

Bag constraints 0.71 0.73
“high vs. low” SVM 0.52 0.55

Supervised SVM 100 labels (0.71) 100 labels (0.71)

4.1 One-Word Classifier

Our first task is to classify sentiment of movie reviews. Our goal is not to compete
with the host of previous sentiment-analysis algorithms [18] in terms of accu-
racy, but rather to provide a light-weight tool when very little information and
resources are available: a “poor-man’s” classifier. In this section, we show how
we are able to obtain good results while assuming very scarce prior knowledge
with simple, clean tools.

We envision a practitioner who knows a very simple fact – that reviews
containing the word “great” are more likely to be positive than negative, but far
from exclusively: many positive reviews do not use the word “great”, and some
negative reviews do use it (“horrific performance by a usually great actor”).

We construct three bags: Bgreat,Bgood,Bbad, each containing reviews with the
corresponding word in them (note the bags are not necessarily disjoint). For the
three bags created on training set instances (10-fold CV) we find that |Bgreat| ≈
700, |Bgood| ≈ 630, |Bbad| ≈ 160, pgreat ≈ 0.6,pgood ≈ 0.45, pbad ≈ 0.25.

For simplicity, we assume no labels are given, but the practitioner has rough
estimates for proportions. This information could come from a sample or from
domain knowledge. In our experiment, we assume an upper bound on the bag
with the highest proportion and a lower bound for each bag. We used a weak
bound for each bag, underestimating it by 50%. We also assumed that pgreat >
pgood > pbad. Again we use a weak bound, overestimating the real difference
by 33%. In Section 4.3 we explore how the tightness of the constraints affects
accuracy, showing our method is robust to loose constraints.

For the “high vs. low” baseline, we take bag Bgreat,Bgood as the positive class,
and Bbad as the other. As seen in Table 1, our method outperforms this naive
baseline, and competes with supervised SVM trained on considerable amounts
of labeled examples. Given fewer labels, supervised SVM is inferior to our label-
free method: providing SVM with 25 labeled instances leads to accuracy of 0.51,
50 labels to accuracy of 0.63, and 75 labels increases accuracy to 0.69.

To test stability, we run the same experiment using different words to cre-
ate the bags. The results are similar. Table 1 shows the results using “excel-
lent”,“nice”, and “terrible”. To make sure the classifier is not learning our input
words, we test removing these words (e.g., “good”) from the documents. In our
experiment, the removal reduced accuracy by less than 1%.
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4.2 Learning from Stereotypes

In this section we simulate a scenario frequently occurring in practice. We have
a large sample of individuals, and would like to predict their level of income
using socio-demographic information. One variable that is known to be correlated
with income is education level. This information is difficult to obtain (budgetary
constraints, privacy issues, respondents’ reluctance etc.) and is available only
for a small sub-sample. In addition, we have no labels – individuals with known
income. We do have ballpark-estimations on income proportions for different
education levels, and the difference between them (based on an earlier census,
expert assessments or other external sources).

In our first experiment we construct bags based on education level: BMasters,
BBachelors,BSome-college, BHigh-School. Over 20-fold CV (size of training set ≈ 1220)
we find that |BMasters| ≈ 90, |BBachelors| ≈ 265, |Bsome-college| ≈ 360, |BHigh-School| ≈
520, pMasters ≈ 0.55,pBachelors ≈ 0.42, psome-college ≈ 0.19, pHigh-School ≈ 0.16.

We use similar constraints to the previous section, but remove all lower
bounds on bags, thus incorporating even less prior information than before.
For the SVM using “high vs. low” baseline, we use BMasters, BBachelors as one
class, and Bsome-college,BHigh-School as the other.

We start with basic features: age, gender, race. After assigning individuals
to education bags, we discard education features from the data – we assume
not to have this information at test time (only for a small sub-sample available
for training). We do retain those features for the Supervised SVM baseline. Our
method achieves cross-validation accuracy of 0.74, while the baseline achieves
0.57. Supervised SVM, even with 1000 labeled examples, only reaches 0.71.

We also experiment with using less bags (removing “Masters”), and with an
expanded feature set (age, race, gender, hours-per-week, capital-gain, capital-
loss). See Table 2 for results. Here too, our method outperforms the baseline,
and rivals supervised SVM with 900 labels.

Of course, we are not limited to using bags based on only education level.
Another well-known correlation is between gender and income. Thus, we can
also slice the data into bags based on education and gender. In another experi-
ment we create 6 bags, BBachelors+Female, BSome-college+Female, BHigh-School+Female,
BBachelors+Male,BSome-college+Male,BHigh-School+Male. There are stark differences
in label proportions between the groups, notably in favor of males.

For the SVM using ‘high vs. low” baseline, we try two different class assign-
ments. We start from Bachelors vs. everyone else. (It could seem more natural
to take, for example, BBachelors+Male as the “high” bag and BHigh-School+Female as
“low”, but this results in too small a sample). The baseline performed relatively
well (Table 2) due to good class separation. However, when we tried females vs.
males, performance of our method remained stable (with highest accuracy), but
the baseline suffered a drastic drop (Table 2). This highlights the difficulty of
using this baseline when using multiple bags based on richer information: it is
not immediately clear how to create two well-separated classes. On the other
hand, our method naturally compares groups based on given constraints.
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Table 2: Census results for different sets of bags. Our method outperforms the naive
SVM baseline, and rivals a supervised SVM with many labeled examples.

Method Education bags Edu + Gender

Bag constraints 0.75 0.77
“high vs. low” SVM (Bachelors vs. other) 0.52 0.6

“high vs. low” SVM (Female vs. Male) - 0.38
Supervised SVM 0.75 (900 labels) 0.77 (900 labels)

More Baselines. Finally, we report classification accuracy on the same dataset,
taken from [20]. The authors create two artificial bags, one retaining original label
proportions and another containing only one class. With these bags, their method
(using known proportions) achieved 0.81 accuracy. They also report results for
Kernel Density Estimation (0.75), Discriminative Sorting – a supervised method
(0.77), MCMC sampling (0.81), and a baseline of predicting the major class
(0.75). Our method achieves comparable performance despite having much less
information on label proportions, fewer features, and using more realistic bags.

4.3 Sensitivity Analysis

In this section we give a short demonstration of how the tightness of constraints
could affect model performance. We create artificial bags and vary the tightness
of some constraints, reporting accuracy. This is a preliminary study, serving to
illustrate some of the different factors that come into play.

We use the 20 Newsgroups dataset [2] containing approximately 20,000
posts across 20 different newsgroups. Some of the newsgroups are closely related
(e.g., comp.sys.ibm.pc.hardware and comp.sys.mac.hardware), while others are
further apart (rec.sport.hockey and sci.space). The task is to classify messages
according to the newsgroup to which they were posted.

We assume predefined bags and vary constraints on label proportions within
and between bags. We do not use any labeled data at training time.

We examine three binary classification tasks, between different categories of
posts: space vs. medicine, ibm.pc vs. mac, and hockey vs. baseball. For each of
these binary classification tasks, we create six bags of training instances B =
{B1,B2, . . .B6}. The sizes of each bag are |B1| = |B2| = 200, |B3| = |B4| =
50, |B5| = |B6| = 100. We thus use only 650 instances in this case – about half
of the 1187 in the training set. The real label proportions within each bag are
p1 = p2 = 0.5, p3 = p4 = 0.3, p5 = p6 = 0.2.

We test the effects of three different types of constraints, corresponding to
common types of aggregate information:
– Upper bounds on bag proportions: Let kmax be the index of the bag

with the highest proportion. We assume an upper bound multiplicative factor
only on this bag: pkmax

× um, where we control factor um.
– Lower bounds: For each true pk, we take as a lower bound lp ∗ pk.
– Bag difference bounds: For each true pk1 − pk2 such that pk1 ≥ pk2 , we

lower-bound the difference with ld × (pk1 − pk2).
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Fig. 3: Constraint effects. Accuracy
results on a validation set: (a) Varying
upper-bound factor on highest pk (b)
Varying individual lower-bound factor
(c) Varying lower bound on bag dif-
ferences. Results remain fairly robust
(with fluctuations due to small-sample
noise). The graph stops abruptly where
constraints are no longer feasible.

Figure 3 shows the results of our ex-
periments. In our initial setting, we take
a fairly loose configuration of constraints
to test our method’s flexibility: ld = 1 (no
lower bound at all for bag differences),
lp = 0.5, and um = 1. In each experi-
ment we vary one factor, keeping the oth-
ers fixed: (a) upper bound on pkmax

, (b)
individual lower bound, (c) lower bound
on bag differences.

Notable in Figure 3 is the overall ro-
bustness of the method to misspecified
constraints. As um is gradually increased,
performance remains overall stable for
a long stretch (3a). However, when um
reaches extremely large values, the up-
per bound on pkmax

becomes too loose
(reaching 1) and robustness collapses. In-
creasing the lower bound on individual
pk slightly improves results, by tightening
constraints (3b). Results remain fairly ro-
bust to overestimating the lower bound on
bag differences by increasing ld,with fluc-
tuations due to small-sample noise (3c).
The graph stops abruptly at ld = 1.3
since beyond that point constraints are no
longer feasible.

Finally, we compare results to the
baselines of the previous Section. For our
method, we fix um = 1, lp = 0.5, ld = 1.33
(with no upper bound on bag differences,
as in previous sections). For the SVM us-
ing “high vs. low” baseline, we take bags
B1,B2 as one class, and B5,B6 as the other
(adding B3,B4 led to inferior results). Our
method outperforms this naive baseline,
and also competes with supervised SVM
trained on considerable amounts of la-
beled examples (Table 3). Given fewer la-
bels, supervised SVM was inferior to our
label-free method.

4.4 Simulation Study

To further test the behavior of our algorithm, we conduct simulation studies
on synthetic data. We use the built-in simulation function make classification
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Table 3: 20 newsgroups results.

Method med-space pc-mac baseball-hockey

Bag constraints 0.94 0.81 0.94
“high vs. low” SVM 0.82 0.62 0.64

Supervised SVM 110 labels (0.93) 95 labels (0.78) 140 labels (0.94)

provided in python package scikit-learn [19] to generate data for a binary clas-
sification problem. We create three equally-sized bags of instances B1,B2,B3 for
our training set, with label proportions p1, p2, p3, respectively. We vary bag sizes
|Bk| and proportions pk, as well as the number of features (n features), number
of informative features (n informative), and class separation (class sep).

We apply our cross-validation procedure to select C, using 3 folds. We observe
some typical behaviors, such as accuracy improvement with growing sample size.
For instance, fixing n features = 20, n informative = 1 and p1 = 0.4, p2 =
0.3, p3 = 0.2, mean accuracy increases from 0.65 with |Bk| = 500, to 0.77 with
|Bk| = 1000.

Accuracy suffered with smaller gaps between bag proportions pk. However,
with increasing sample size our algorithm got better at handling minuscule dif-
ferences between pk. For example, fixing p1 = 0.4, p2 = 0.35, p3 = 0.33, mean
accuracy increases from 0.6 with |Bk| = 500 to 0.65 with |Bk| = 1000, and further
increases to 0.67 with |Bk| = 1500.

Finally, we expect that labeled instances can improve performance, helping
to counter bags that are very noisy or constraints that are not sufficiently tight.
Preliminary experiments suggest that labeled instances can improve accuracy,
but a comprehensive study of this effect is beyond the scope of this paper.

5 Exploratory Analysis

In previous sections we tackled classification problems with a clear objective.
In this section our users have no specific classification in mind, but rather are
interested in exploring the data. A sub-field within clustering allows users to
guide the formation of clusters, usually in the form of pairwise constraints on
instances (forcing data points to belong to the same cluster or to different clus-
ters). A recent approach uses a maximum-margin framework [28], which extends
the supervised large margin theory (such as SVMs) to an unsupervised setting.
Similarly, we adapt our method to the exploratory setting. Rather than using
instance-level constraints on cluster membership, we use ranking constraints
based on prior knowledge – or on hypotheses we would like to explore.

We used the Geo-tagged tweets dataset, containing 377616 messages from
9475 geo-located microblog users over one week in March 2010 [9]. The user base
is likely dominantly composed of teens and young adults (as some of the examples
below will make clear). We combine all tweets for each user, and reverse-geocode
the GPS coordinates to obtain the corresponding state.
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Table 4: Geo-tagged tweets. For each set of geographic constraints, we show
some of the top positive and negative words resulting from running our method.

Constraints Positive terms Negative terms

French > English:
Quebec > Texas

je, est, et, le, pour Houston, Texas, dal-
las, bro, tryna, boo

East Coast > West
Coast: CA > NY,
CA > PA, WA > NY,
WA > PA

hella, coo, fasho, af,
la, cali, san, washing-
ton

deadass, niggas,
skool, wassup, dis,
dat, philly, crib, lml,
nah, dey, den

Ranking by reli-
giosity: Alabama >
Florida > New York

thank, easter, pray,
road, trip, drove,
loving, relationship,
spring, folks, happy,
dreams, laugh, friend

mad, bitches, neva,
dis, dat, niggas,ova,
spanish, girls, crazy,
party, fun, high, dead

The dataset was used in [9] to analyze regional dialects. The authors used a
cascading topic model to model geographic topic variation. The observed output
of the generative process includes the texts and GPS coordinates of each user.
We pursue this line of exploration too, but rather than positing a generative
model of language, we investigate how various constraints on differences between
geographic locations interact with dialect.

In Table 4, we show some of the constraints we explored and the resulting
top positive and negative words. We start with a simple check with two bags
BQuebec � BTexas, combining tweets from Quebec and Texas, respectively. We
discover obvious differences in language, with strong positive weights correspond-
ing to French words and negative weights to English.

An ordinary classifier would likely recover similar results, as would stan-
dard unsupervised clustering algorithms. However, our method allows to pur-
sue richer, more expressive constraints. First, we look into the difference be-
tween the East Coast and West Coast by imposing pairs of constraints such as
BCalifornia � BNew York, BCalifornia � BPennsylvania. We recover various results pre-
viously highlighted by [9], such as the use of the slang terms “fasho” (for sure)
“coo” (cool),“hella” in the West Coast, and ”deadass”, “wassup” and “niggas”
in the East Coast. Our results agree with findings by [9,10], as well as suggest
some potential new findings.

Finally, we look at a set of more expressive constraints, aiming to recover dif-
ference based on religiosity (or at least sociological confounders). We take states
from the top, middle and bottom of a list of US states ranked by percentage of
self-reported religiosity 1, and build sets of constraints that reflect this ordering.
For instance, in Table 4, we show results for BAlabama � BFlorida � BNew York.
Note that using such information in a standard classifier is unnatural. It is not

1 https://en.wikipedia.org/wiki/List_of_U.S._states_by_religiosity

https://en.wikipedia.org/wiki/List_of_U.S._states_by_religiosity
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clear how to construct the classes, and different splits could lead to very different
results. Again, this artificial splitting is not required by our method.

We removed terms not in the wordnet [11] lexicon to mitigate the effects of
local vernacular and highlight deeper differences. The differences in language are
quite striking. As we traverse from Alabama to Florida to New York, discourse
shifts from words such as “glad”, “loving”, ”happy”, “dreams”, “easter” and
“pray”, to words including “mad”, “bitches”, “crazy”, “party”, “fun”, “high”
and other more profane content we spared from the reader. Similar results were
obtained for other state tuples (e.g., Texas instead of Alabama).

Note that our method can be used for formulating new hypotheses. To test
the hypotheses, more experiments (and often more data collection) are needed.
We leave it up to sociologists to provide deeper interpretation of these results.

Our goal in this section was to use coarse prior information (in the form of
relative rankings) for exploring a dataset. We note that the problem could be
tackled with other approaches, such as topic models or classification. However,
classification models assume a much stronger discriminative pattern or signal
than taking a softer, weakly-supervised approach that seeks a direction (weight
vector w) along which one bag of instances is ranked higher than another. While
clustering with pairwise memberships constraints is well-studied, we demonstrate
clustering with expressive pairwise ranking constraints over sets. Many real-
world settings naturally lend themselves to this formulation.

6 Discussion and Criticism

One clear practical issue with our method is the source of the constraints. We
have illustrated several real-world cases where it is plausible to attain rough con-
straints on label proportions within and between groups of instances. In previous
work [20], it is suggested that practitioners could sample from bags of instances
to estimate label frequencies (e.g., in spam classification tasks). However, accu-
rate estimations might require extensive sampling, exacting high costs. We thus
relax this rather strong assumption, and propose that in many cases, it is possi-
bly enough to get rough estimates. For example, after sampling 10 instances, we
might observe 9 positives and only one negative, and rather conservatively de-
clare “B should have more than 50% positives”. This sort of statement could of
course be made more rigorous with probabilistic considerations (e.g., confidence
intervals). We have demonstrated that even with considerably mis-specified con-
straints, we are still able to achieve good performance across various domains.

Furthermore, external sources of knowledge could be used to construct these
constraints, such as previous surveys. In many cases taking exact figures from
surveys (such as political polls) and expecting them to accurately reflect the dis-
tribution in new data is not realistic. This is the case, for instance, when looking
at national political polls and wishing to extrapolate from them to new very
different socio-demographic slices, such as Twitter users. Here too, we could use
this external knowledge to approximately guide our model, rather than dictate
precise hard proportions the model should match.
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7 Related Work

There is a large body of work that is related to our problem.

Multiple Instance Learning. The field of Multiple Instance Learning (MIL)
generally assumes instances come in “bags”, each associated with a label modeled
as a function of latent instance-level labels, which can be seen as a form of weak
supervision. MIL methods vary by the assumptions made on this function. For a
comprehensive review of assumptions and applications, see [7],[12]. Most work in
MIL focuses on making bag-level predictions rather than for individual instances.
Recently, [15] used a convolutional neural network to predict labels for sentences
given document-level labels.

Learning from Proportions. A niche within MIL which has seen growing in-
terest and is closely-related to this paper, is concerned with predicting instance-
level labels from known label proportions given for each bag. [20] assume to
be given bags of unlabeled examples, each bag with known label proportions.
Their method is based on estimating bag-means using given label proportions.
The authors provide examples for scenarios in which such information could be
available. In [21], the authors represent each bag with its mean, and model the
known class proportions based on this representative “super-instance” with an
SVM method, showing superior performance over [20]. In [27], instance-level la-
bels are explicitly modeled to overcome issues the authors raise with representing
bags with their means, such as when data distribution has high variance. The
fundamental property these and other approaches share is that bag proportions
are assumed be known or easily estimated, an assumption we relax.

Classification with Weak Signals. We applied our model to the problem of
text classification when little or no labels are available but only a weaker signal.
A vast amount of literature has tackled similar scenarios over the years, using
tools from semi-supervised [6,14] active [16,22,24] and unsupervised [3] learn-
ing. Druck et al. [8] apply generalized expectation feature-labeling (GE-FL) ap-
proaches, using “labeled features” given by an oracle that encode knowledge such
as “the word puck is a strong indicator of hockey”. In practice, a Latent Dirichlet
Allocation (LDA) [5] topic model is applied to the data to select top features per
topic, for which a user provides labels. [23] propose a semi-supervised + active-
learning method, with a human-in-the-loop who provides both feature-level and
instance-level labels. We are also able to use labeled instances to refine the learn-
ing process, allowing for a trade-off between the user’s trust in the (typically few)
labeled instances available, and prior knowledge on bag proportions.

Similar to the above work on learning from labeled proportions, [25] considers
a classification problem with no access to labels for individual training examples,
but only average labels over subpopulations. They frame the problem as weakly-
supervised clustering. When using our method for exploratory analysis, it can
also be seen as a weakly-supervised clustering algorithm, using information on
partial ordering between bags rather than assuming known proportions, within a
max-margin framework (somewhat akin to clustering using maximum-margin as
in [28]). The seminal work of [26] uses side-information for clustering in the form
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of pairwise constraints on cluster membership (pairwise similarity). Much work
has since been done along these lines. We incorporate pairwise constraints in our
maximum-margin approach, though with pairs representing bags of instances,
and partial ordering with respect to relative label proportions.

Robust Optimization. Finally, robust optimization [4] research deals with
uncertainty-affected optimization problems, by optimizing for the worst-case
value of parameters. Because of its worst-case design, robust optimization can
do poorly when the constraints are not tight. Our method, on the other hand,
is designed to handle rough estimates and loose constraints.

8 Conclusions and Future Work

In this paper we proposed a new learning setting where we have bags of unlabeled
instances with loose constraints on label proportions and difference between
bags. Thus, we relax the unrealistic assumption of known bag proportions.

We formalized the problem as a bi-convex optimization problem and pro-
posed an efficient algorithm. We showed how, surprisingly, our classifier performs
well using very little input. We also demonstrated how the algorithm can guide
exploratory classifications.

We have empirically studied the behavior of our algorithm under different
types of constraints. One direction for future work is to analytically understand,
for instance, how constraint tightness affects performance, obtain convergence
guarantees, and provide generalization error bounds. This, in turn, could perhaps
lead to better algorithms with theoretical justifications.

Finally, the relative-proportions setting is very natural, and can be found in
various domains. We believe that this line of work will have interesting implica-
tions regarding privacy and anonymization of data – in particular, the amount
of information one can recover using only weak, aggregated signals.
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